Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder
Autor/-in: Infanger, Sophia
Hämmerli, Alexander
Iliev, Simona
Baier, Andrea
Stoyanov, Edmont
Quodbach, Julian
et. al: No
DOI: 10.1016/j.ijpharm.2018.11.048
Erschienen in: International Journal of Pharmaceutics
Band(Heft): 555
Seite(n): 198
Seiten bis: 206
Erscheinungsdatum: 2018
Verlag / Hrsg. Institution: Elsevier
ISSN: 0378-5173
1873-3476
Sprache: Englisch
Schlagwörter: 3D-printing; Binder free; Drop-on-powder; Drop-on-solid; Individualized medicine; Inkjet; Chemistry, pharmaceutical; Drug liberation; Surface property; Technology, pharmaceutical; Drug delivery system
Fachgebiet (DDC): 610.28: Biomedizin, Biomedizinische Technik
Zusammenfassung: 3D-printing is a promising tool to pave the way to the widespread adaption of individualized medicine. Several printing techniques have been investigated and introduced to pharmaceutical research. Until now, only one 3D-printed medicine is approved on the US market. The medicine is manufactured via drop-on-powder deposition, which uses inkjet printing to jet a liquid binder on a powder bed to create 3D objects. However, inkjet processes are prone to nozzle clogging when binders or active pharmaceutical ingredients (APIs) are included in the printing ink. This renders the formulation development of the ink the most challenging step. In this study, different hydroxypropyl cellulose (HPC) grades were investigated as solid binders in the powder formulation on a commercially available DoP printer. The printed ink only consisted of a water/ethanol mixture. Formulations containing 70% caffeine as model API were developed and tablets printed. It was found that the friability of the tablets greatly depends on the particle size of the employed binder, whereas disintegration time and dissolution properties mainly depend on the viscosity of the employed binders. Higher viscous binders led to slower disintegration and dissolution whereas lower viscous binders led to faster disintegration and dissolution. The study demonstrates that HPC is a suitable solid binder for DoP printing and that 3D-DoP printing can be used to print robust dosage forms.
URI: https://digitalcollection.zhaw.ch/handle/11475/29006
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Chemie und Biotechnologie (ICBT)
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Infanger, S., Hämmerli, A., Iliev, S., Baier, A., Stoyanov, E., & Quodbach, J. (2018). Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. International Journal of Pharmaceutics, 555, 198–206. https://doi.org/10.1016/j.ijpharm.2018.11.048
Infanger, S. et al. (2018) ‘Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder’, International Journal of Pharmaceutics, 555, pp. 198–206. Available at: https://doi.org/10.1016/j.ijpharm.2018.11.048.
S. Infanger, A. Hämmerli, S. Iliev, A. Baier, E. Stoyanov, and J. Quodbach, “Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder,” International Journal of Pharmaceutics, vol. 555, pp. 198–206, 2018, doi: 10.1016/j.ijpharm.2018.11.048.
INFANGER, Sophia, Alexander HÄMMERLI, Simona ILIEV, Andrea BAIER, Edmont STOYANOV und Julian QUODBACH, 2018. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. International Journal of Pharmaceutics. 2018. Bd. 555, S. 198–206. DOI 10.1016/j.ijpharm.2018.11.048
Infanger, Sophia, Alexander Hämmerli, Simona Iliev, Andrea Baier, Edmont Stoyanov, and Julian Quodbach. 2018. “Powder Bed 3D-Printing of Highly Loaded Drug Delivery Devices with Hydroxypropyl Cellulose as Solid Binder.” International Journal of Pharmaceutics 555: 198–206. https://doi.org/10.1016/j.ijpharm.2018.11.048.
Infanger, Sophia, et al. “Powder Bed 3D-Printing of Highly Loaded Drug Delivery Devices with Hydroxypropyl Cellulose as Solid Binder.” International Journal of Pharmaceutics, vol. 555, 2018, pp. 198–206, https://doi.org/10.1016/j.ijpharm.2018.11.048.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.