Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-26051
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes
Autor/-in: Marmet, Philip
Holzer, Lorenz
Grolig, Jan G.
Bausinger, Holger
Mai, Andreas
Brader, Joseph M.
Hocker, Thomas
et. al: No
DOI: 10.1039/D1CP01962G
10.21256/zhaw-26051
Erschienen in: Physical Chemistry Chemical Physics
Band(Heft): 23
Heft: 40
Seite(n): 23042
Seiten bis: 23074
Erscheinungsdatum: 2021
Verlag / Hrsg. Institution: Royal Society of Chemistry
ISSN: 1463-9076
1463-9084
Sprache: Englisch
Schlagwörter: SOFC; Multiphysics modeling; MIEC; CGO; Electrochemical impedance spectroscopy; Chemical capacitance
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: Mixed ionic and electronic conducting (MIEC) materials recently gained much interest for use as anodes in solid oxide fuel cell (SOFC) applications. However, many processes in MIEC-based porous anodes are still poorly understood and the appropriate interpretation of corresponding electrochemical impedance spectroscopy (EIS) data is challenging. Therefore, a model which is capable to capture all relevant physico-chemical processes is a crucial prerequisite for systematic materials optimization. In this contribution we present a comprehensive model for MIEC-based anodes providing both the DC-behaviour and the EIS-spectra. The model enables one to distinguish between the impact of the chemical capacitance, the reaction resistance, the gas impedance and the charge transport resistance on the EIS-spectrum and therewith allows its appropriate interpretation for button cell conditions. Typical MIEC-features are studied with the model applied to gadolinium doped ceria (CGO) anodes with different microstructures. The results obtained for CGO anodes reveal the spatial distribution of the reaction zone and associated transport distances for the charge carriers and gas species. Moreover, parameter spaces for transport limited and surface reaction limited situations are depicted. By linking bulk material properties, microstructure effects and the cell design with the cell performance, we present a way towards a systematic materials optimization for MIEC-based anodes.
URI: https://digitalcollection.zhaw.ch/handle/11475/26051
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Publiziert im Rahmen des ZHAW-Projekts: Versatile oxide fuel cell microstructures employing WGS active titanate anode current collectors compatible to ferritic stainless steel interconnects (VOLTA)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2021_Marmet-etal_Impedance-repsonse-steady-state-behaviour-modeling.pdf8.27 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Marmet, P., Holzer, L., Grolig, J. G., Bausinger, H., Mai, A., Brader, J. M., & Hocker, T. (2021). Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes. Physical Chemistry Chemical Physics, 23(40), 23042–23074. https://doi.org/10.1039/D1CP01962G
Marmet, P. et al. (2021) ‘Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes’, Physical Chemistry Chemical Physics, 23(40), pp. 23042–23074. Available at: https://doi.org/10.1039/D1CP01962G.
P. Marmet et al., “Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes,” Physical Chemistry Chemical Physics, vol. 23, no. 40, pp. 23042–23074, 2021, doi: 10.1039/D1CP01962G.
MARMET, Philip, Lorenz HOLZER, Jan G. GROLIG, Holger BAUSINGER, Andreas MAI, Joseph M. BRADER und Thomas HOCKER, 2021. Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes. Physical Chemistry Chemical Physics. 2021. Bd. 23, Nr. 40, S. 23042–23074. DOI 10.1039/D1CP01962G
Marmet, Philip, Lorenz Holzer, Jan G. Grolig, Holger Bausinger, Andreas Mai, Joseph M. Brader, and Thomas Hocker. 2021. “Modeling the Impedance Response and Steady State Behaviour of Porous CGO-Based MIEC Anodes.” Physical Chemistry Chemical Physics 23 (40): 23042–74. https://doi.org/10.1039/D1CP01962G.
Marmet, Philip, et al. “Modeling the Impedance Response and Steady State Behaviour of Porous CGO-Based MIEC Anodes.” Physical Chemistry Chemical Physics, vol. 23, no. 40, 2021, pp. 23042–74, https://doi.org/10.1039/D1CP01962G.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.