Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-23441
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry
Autor/-in: Moser, Marlies
Georg, Alain G.
Steinemann, Finn Lorenz
Meier, Daniel Matthias
Rütti, David
et. al: No
DOI: 10.1007/s41981-021-00204-y
10.21256/zhaw-23441
Erschienen in: Journal of Flow Chemistry
Band(Heft): 11
Heft: 3
Seite(n): 691
Seiten bis: 699
Erscheinungsdatum: 18-Okt-2021
Verlag / Hrsg. Institution: Springer
ISSN: 2062-249X
2063-0212
Sprache: Englisch
Schlagwörter: Continuous fow reactor; Isoperibolic reaction calorimetry; Heat of reaction; Safety; Process development; Scale-up
Fachgebiet (DDC): 540: Chemie
Zusammenfassung: Reaction calorimetry of flow processes is important for scale-up and safety in flow chemistry. Due to the increasing number of flow processes, corresponding flow calorimeters are required as an alternative or addition to high-precision batch calorimeters. In this work, a milli-scale isoperibol continuous flow calorimeter was used to measure the heat of reaction based on an elaborated heat transfer model. This allows for reaction calorimetry without calibration. The model was tested with a selective, fast and exothermic neutralization reaction of acetic acid and sodium hydroxide at different flow rates, concentrations and viscosities. Deviations of the mean heats of reaction from the literature values were only about 2%. The calorimetric data can further be used for direct scale-up with tube bundle mixer heat exchangers having similar heat transfer characteristics. In addition, a reaction screening at different flow rates allows to find the maximum temperature and maximum heat generation. This data is useful in safety analyses of continuous processes. For these reasons, continuous reaction calorimetry provides a practical scale-up tool for flow processes.
URI: https://digitalcollection.zhaw.ch/handle/11475/23441
Volltext Version: Akzeptierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Gesperrt bis: 2022-10-18
Departement: School of Engineering
Organisationseinheit: Institute of Materials and Process Engineering (IMPE)
Publiziert im Rahmen des ZHAW-Projekts: Entwicklung eines experimentbasierten Designtools für kontinuierliche Reaktoren
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2021_Moser-etal_Continous-milli-scale-reaction-calorimeter.pdfAccepted Version621.36 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Moser, M., Georg, A. G., Steinemann, F. L., Meier, D. M., & Rütti, D. (2021). Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry. Journal of Flow Chemistry, 11(3), 691–699. https://doi.org/10.1007/s41981-021-00204-y
Moser, M. et al. (2021) ‘Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry’, Journal of Flow Chemistry, 11(3), pp. 691–699. Available at: https://doi.org/10.1007/s41981-021-00204-y.
M. Moser, A. G. Georg, F. L. Steinemann, D. M. Meier, and D. Rütti, “Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry,” Journal of Flow Chemistry, vol. 11, no. 3, pp. 691–699, Oct. 2021, doi: 10.1007/s41981-021-00204-y.
MOSER, Marlies, Alain G. GEORG, Finn Lorenz STEINEMANN, Daniel Matthias MEIER und David RÜTTI, 2021. Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry. Journal of Flow Chemistry. 18 Oktober 2021. Bd. 11, Nr. 3, S. 691–699. DOI 10.1007/s41981-021-00204-y
Moser, Marlies, Alain G. Georg, Finn Lorenz Steinemann, Daniel Matthias Meier, and David Rütti. 2021. “Continuous Milli-Scale Reaction Calorimeter for Direct Scale-up of Flow Chemistry.” Journal of Flow Chemistry 11 (3): 691–99. https://doi.org/10.1007/s41981-021-00204-y.
Moser, Marlies, et al. “Continuous Milli-Scale Reaction Calorimeter for Direct Scale-up of Flow Chemistry.” Journal of Flow Chemistry, vol. 11, no. 3, Oct. 2021, pp. 691–99, https://doi.org/10.1007/s41981-021-00204-y.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.