Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: 2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures
Autor/-in: Schumacher, Jürgen
Eller, Jens
Sartoris, Guido
Colinart, Thibaut
Seyfang, Bernhard C.
DOI: 10.1080/13873954.2011.642390
Erschienen in: Mathematical and Computer Modelling of Dynamical Systems
Band(Heft): 18
Heft: 4
Seite(n): 355
Seiten bis: 377
Erscheinungsdatum: 3-Jan-2012
Verlag / Hrsg. Institution: Taylor & Francis
ISSN: 1387-3954
1744-5051
Sprache: Englisch
Schlagwörter: Model reduction; Modelling; Polymer electrolyte fuel cell
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: A computationally efficient model of a polymer electrolyte fuel cell (PEFC) is presented, based on a 2+1D FEM modelling approach. This approach is suitable to take the high aspect ratio between the in-plane and the through-plane dimensions of fuel cells into account, and to avoid expensive 3D calculations. The anode and cathode are described by 2D transport models. The coupling between the anode and cathode side is established by a nonlinear point-to-point 1D model representing the membrane electrode assembly (MEA). This 1D boundary value problem is formulated using the computer algebra software Mathematica. The approach is based on the symbolic weak form expressions of a nonlinear system of PDEs. The integrands of the tangential element stiffness matrix and the element residual vector of the coupled FEM problem are computed analytically. These integrands are converted to C code automatically. The model is applied to simulate a micro PEFC without gas diffusion layers (GDLs). The simulations reveal an inhomogeneous in-plane electric current density. Further, neutron radiography data obtained with the micro fuel cell is compared to the calculated water flux between the 1D MEA model and the 2D domains. The model is used to explain the locations where water condensation is found.
URI: https://digitalcollection.zhaw.ch/handle/11475/11608
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Schumacher, J., Eller, J., Sartoris, G., Colinart, T., & Seyfang, B. C. (2012). 2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures. Mathematical and Computer Modelling of Dynamical Systems, 18(4), 355–377. https://doi.org/10.1080/13873954.2011.642390
Schumacher, J. et al. (2012) ‘2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures’, Mathematical and Computer Modelling of Dynamical Systems, 18(4), pp. 355–377. Available at: https://doi.org/10.1080/13873954.2011.642390.
J. Schumacher, J. Eller, G. Sartoris, T. Colinart, and B. C. Seyfang, “2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures,” Mathematical and Computer Modelling of Dynamical Systems, vol. 18, no. 4, pp. 355–377, Jan. 2012, doi: 10.1080/13873954.2011.642390.
SCHUMACHER, Jürgen, Jens ELLER, Guido SARTORIS, Thibaut COLINART und Bernhard C. SEYFANG, 2012. 2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures. Mathematical and Computer Modelling of Dynamical Systems. 3 Januar 2012. Bd. 18, Nr. 4, S. 355–377. DOI 10.1080/13873954.2011.642390
Schumacher, Jürgen, Jens Eller, Guido Sartoris, Thibaut Colinart, and Bernhard C. Seyfang. 2012. “2+1D Modelling of a Polymer Electrolyte Fuel Cell with Glassy-Carbon Microstructures.” Mathematical and Computer Modelling of Dynamical Systems 18 (4): 355–77. https://doi.org/10.1080/13873954.2011.642390.
Schumacher, Jürgen, et al. “2+1D Modelling of a Polymer Electrolyte Fuel Cell with Glassy-Carbon Microstructures.” Mathematical and Computer Modelling of Dynamical Systems, vol. 18, no. 4, Jan. 2012, pp. 355–77, https://doi.org/10.1080/13873954.2011.642390.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.