Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchumacher, Jürgen-
dc.contributor.authorAltermatt, Pietro-
dc.contributor.authorHeiser, Gernot-
dc.contributor.authorAberle, Armin-
dc.date.accessioned2018-10-10T11:29:56Z-
dc.date.available2018-10-10T11:29:56Z-
dc.date.issued2001-01-
dc.identifier.issn0927-0248de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/11581-
dc.description.abstractThe commonly used band-gap narrowing (BGN) models for crystalline silicon do not describe heavily doped emitters with desirable precision. One of the reasons for this is that the applied BGN models were empirically derived from measurements assuming Boltzmann statistics. We apply a new BGN model derived by Schenk from quantum mechanical principles and demonstrate that carrier degeneracy and the new BGN model both substantially affect the electron-hole product within the emitter region. Simulated saturation current densities of heavily phosphorus-doped emitters, calculated with the new BGN model, are lower than results obtained with the widely used empirical BGN model of del Alamo.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofSolar Energy Materials & Solar Cellsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectBand-gap narrowingde_CH
dc.subjectHeavily doped siliconde_CH
dc.subjectDegeneracyde_CH
dc.subjectNumerical simulationde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleApplication of an improved band gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emittersde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/S0927-0248(00)00082-9de_CH
zhaw.funding.euNode_CH
zhaw.issue1-4de_CH
zhaw.originated.zhawNode_CH
zhaw.pages.end103de_CH
zhaw.pages.start95de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume65de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Schumacher, J., Altermatt, P., Heiser, G., & Aberle, A. (2001). Application of an improved band gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters. Solar Energy Materials & Solar Cells, 65(1-4), 95–103. https://doi.org/10.1016/S0927-0248(00)00082-9
Schumacher, J. et al. (2001) ‘Application of an improved band gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters’, Solar Energy Materials & Solar Cells, 65(1-4), pp. 95–103. Available at: https://doi.org/10.1016/S0927-0248(00)00082-9.
J. Schumacher, P. Altermatt, G. Heiser, and A. Aberle, “Application of an improved band gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters,” Solar Energy Materials & Solar Cells, vol. 65, no. 1-4, pp. 95–103, Jan. 2001, doi: 10.1016/S0927-0248(00)00082-9.
SCHUMACHER, Jürgen, Pietro ALTERMATT, Gernot HEISER und Armin ABERLE, 2001. Application of an improved band gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters. Solar Energy Materials & Solar Cells. Januar 2001. Bd. 65, Nr. 1-4, S. 95–103. DOI 10.1016/S0927-0248(00)00082-9
Schumacher, Jürgen, Pietro Altermatt, Gernot Heiser, and Armin Aberle. 2001. “Application of an Improved Band Gap Narrowing Model to the Numerical Simulation of Recombination Properties of Phosphorus-Doped Silicon Emitters.” Solar Energy Materials & Solar Cells 65 (1-4): 95–103. https://doi.org/10.1016/S0927-0248(00)00082-9.
Schumacher, Jürgen, et al. “Application of an Improved Band Gap Narrowing Model to the Numerical Simulation of Recombination Properties of Phosphorus-Doped Silicon Emitters.” Solar Energy Materials & Solar Cells, vol. 65, no. 1-4, Jan. 2001, pp. 95–103, https://doi.org/10.1016/S0927-0248(00)00082-9.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.