Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-4652
Title: Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum
Authors : Anet, J. G.
Muthers, S.
Rozanov, E. V.
Raible, C. C.
Stenke, A.
Shapiro, A. I.
Brönnimann, S.
Arfeuille, F.
Brugnara, Y.
Beer, J.
Steinhilber, F.
Schmutz, W.
Peter, T.
Published in : Climate of the Past
Volume(Issue) : 10
Pages : 921
Pages to: 938
Publisher / Ed. Institution : Copernicus
Issue Date: 2014
License (according to publishing contract) : CC BY 3.0: Namensnennung 3.0 Unported
Type of review: Peer review (Publication)
Language : English
Subject (DDC) : 500: Natural sciences and mathematics
Abstract: The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.
Departement: School of Engineering
Organisational Unit: Centre for Aviation (ZAV)
Publication type: Article in scientific Journal
DOI : 10.5194/cp-10-921-2014
10.21256/zhaw-4652
ISSN: 1814-9332
URI: https://digitalcollection.zhaw.ch/handle/11475/8907
Appears in Collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2014_Anet_Impact_of_solar_versus_volcanic_activity_variations.pdf12.15 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.