Publikationstyp: Vorlesung
Titel: Boosting parameter inference with stochastic models using molecular dynamics and high-performance computing
Autor/-in: Ulzega, Simone
Erscheinungsdatum: 11-Apr-2017
Sprache: Englisch
Fachgebiet (DDC): 003: Systeme
Zusammenfassung: Parameter inference is a fundamental problem in data-driven modeling. The aim is to find a so-called posterior distribution of model parameters that are able to explain observed data and can be used for making probabilistic predictions. We propose a novel, exact, very efficient and highly parallelizable Hamiltonian Monte Carlo approach for generating posterior parameter distributions, for stochastic models calibrated to measured time-series. The algorithm is inspired by re-interpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, whose dynamics is confined by both the model and the measurements.
Weitere Angaben: Invited seminar at ENS, Paris
Lizenz (gemäss Verlagsvertrag): Keine Angabe
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Computational Life Sciences (ICLS)
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.