Title: Extended light scattering model incorporating coherence for thin-film silicon solar cells
Authors : Lanz, Thomas
Ruhstaller, Beat
Battaglia, Corsin
Ballif, Christophe
Published in : Journal of Applied Physics
Volume(Issue) : 110
Issue : 3
Publisher / Ed. Institution : AIP Publishing
Issue Date: 12-Aug-2011
License (according to publishing contract) : Licence according to publishing contract
Type of review: Peer review (Publication)
Language : English
Subject (DDC) : 621.3: Electrical engineering and electronics
Abstract: We present a comprehensive scalar light-scattering model for the optical simulation of silicon thin film solar cells. The model integrates coherent light propagation in thin layers with a direct, non-iterative treatment of light scattered at rough layer interfaces. The direct solution approach ensures computational efficiency, which is a key advantage for extensive calculations in the context of evaluation of different cell designs and parameter extraction. We validate the model with experimental external quantum efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well with measurements for cells deposited on both rough and flat substrates. The model is then applied to study the influence of the absorber layer thickness on the maximum achievable photocurrent for the two cell types. This efficient numerical framework will enable a quantitative model-based assessment of the optimization potential for light trapping in textured thin film silicon solar cells.
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Publication type: Article in scientific Journal
DOI : 10.1063/1.3622328
ISSN: 0021-8979
URI: https://digitalcollection.zhaw.ch/handle/11475/6970
Appears in Collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.