Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: An effective area approach to model lateral degradation in organic solar cells
Authors: Züfle, Simon
Neukom, Martin T.
Altazin, Stéphane
Zinggeler, Marc
Chrapa, Marek
Offermans, Ton
Ruhstaller, Beat
DOI: 10.1002/aenm.201500835
Published in: Advanced Energy Materials
Volume(Issue): 5
Issue: 20
Issue Date: Sep-2015
Publisher / Ed. Institution: Wiley
ISSN: 1614-6832
1614-6840
Language: English
Subject (DDC): 621.3: Electrical, communications, control engineering
Abstract: In standard unencapsulated poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells exposed to humid air, the oxidation of the aluminum cathode is known to be a key degradation mechanism. Water that enters the device at the edges and through pinholes diffuses to the organic–electrode interface. The forming oxide acts as a thin insulating layer that gives rise to an injection/extraction barrier and leads to a loss in the device current. In order to understand this behavior in detail various steady-state, transient, and impedance measurement techniques are performed in combination with drift-diffusion simulations. With this combinatorial approach the dominant degradation mechanism is confirmed to be the development of a blocking interface layer. This layer grows laterally leading to a loss in effective area due to the rapid local oxidation of the aluminum layer. Thus by combining multiple electrical techniques and optoelectrical simulations the dominant degradation mechanism can be evaluated. The same methodology is also beneficial for more stable and efficient novel solar cells.
URI: https://digitalcollection.zhaw.ch/handle/11475/2765
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show full item record
Züfle, S., Neukom, M. T., Altazin, S., Zinggeler, M., Chrapa, M., Offermans, T., & Ruhstaller, B. (2015). An effective area approach to model lateral degradation in organic solar cells. Advanced Energy Materials, 5(20). https://doi.org/10.1002/aenm.201500835
Züfle, S. et al. (2015) ‘An effective area approach to model lateral degradation in organic solar cells’, Advanced Energy Materials, 5(20). Available at: https://doi.org/10.1002/aenm.201500835.
S. Züfle et al., “An effective area approach to model lateral degradation in organic solar cells,” Advanced Energy Materials, vol. 5, no. 20, Sep. 2015, doi: 10.1002/aenm.201500835.
ZÜFLE, Simon, Martin T. NEUKOM, Stéphane ALTAZIN, Marc ZINGGELER, Marek CHRAPA, Ton OFFERMANS und Beat RUHSTALLER, 2015. An effective area approach to model lateral degradation in organic solar cells. Advanced Energy Materials. September 2015. Bd. 5, Nr. 20. DOI 10.1002/aenm.201500835
Züfle, Simon, Martin T. Neukom, Stéphane Altazin, Marc Zinggeler, Marek Chrapa, Ton Offermans, and Beat Ruhstaller. 2015. “An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells.” Advanced Energy Materials 5 (20). https://doi.org/10.1002/aenm.201500835.
Züfle, Simon, et al. “An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells.” Advanced Energy Materials, vol. 5, no. 20, Sept. 2015, https://doi.org/10.1002/aenm.201500835.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.