Please use this identifier to cite or link to this item:
https://doi.org/10.21256/zhaw-27429
Publication type: | Conference poster |
Type of review: | Peer review (abstract) |
Title: | Deconvolution of NMR spectra : a deep learning-based approach |
Authors: | Schmid, Nicolas Bruderer, Simon Fischetti, Giulia Paruzzo, Federico Toscano, Giuseppe Graf, Dominik Fey, Michael Ziebart, Volker Henrici, Andreas Grabner, Helmut Wegner, Jan Dirk Sigel, Roland K.O. Heitmann, Björn Wilhelm, Dirk |
et. al: | No |
DOI: | 10.21256/zhaw-27429 |
Conference details: | Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023 |
Issue Date: | 11-Jan-2023 |
Publisher / Ed. Institution: | ZHAW Zürcher Hochschule für Angewandte Wissenschaften |
Language: | English |
Subject (DDC): | 006: Special computer methods 530: Physics |
URI: | https://digitalcollection.zhaw.ch/handle/11475/27429 |
Fulltext version: | Published version |
License (according to publishing contract): | Licence according to publishing contract |
Departement: | School of Engineering |
Organisational Unit: | Institute of Applied Mathematics and Physics (IAMP) Institute of Data Analysis and Process Design (IDP) |
Published as part of the ZHAW project: | Maschinelles Lernen für NMR-Spektroskopie |
Appears in collections: | Publikationen School of Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023_Schmid-etal_Deconvolution-of-NMR-spectra_Datalab-Symposium-Poster.pdf | 3.03 MB | Adobe PDF | ![]() View/Open |
Show full item record
Schmid, N., Bruderer, S., Fischetti, G., Paruzzo, F., Toscano, G., Graf, D., Fey, M., Ziebart, V., Henrici, A., Grabner, H., Wegner, J. D., Sigel, R. K. O., Heitmann, B., & Wilhelm, D. (2023, January 11). Deconvolution of NMR spectra : a deep learning-based approach. Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023. https://doi.org/10.21256/zhaw-27429
Schmid, N. et al. (2023) ‘Deconvolution of NMR spectra : a deep learning-based approach’, in Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023. ZHAW Zürcher Hochschule für Angewandte Wissenschaften. Available at: https://doi.org/10.21256/zhaw-27429.
N. Schmid et al., “Deconvolution of NMR spectra : a deep learning-based approach,” in Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023, Jan. 2023. doi: 10.21256/zhaw-27429.
SCHMID, Nicolas, Simon BRUDERER, Giulia FISCHETTI, Federico PARUZZO, Giuseppe TOSCANO, Dominik GRAF, Michael FEY, Volker ZIEBART, Andreas HENRICI, Helmut GRABNER, Jan Dirk WEGNER, Roland K.O. SIGEL, Björn HEITMANN und Dirk WILHELM, 2023. Deconvolution of NMR spectra : a deep learning-based approach. In: Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023. Conference poster. ZHAW Zürcher Hochschule für Angewandte Wissenschaften. 11 Januar 2023
Schmid, Nicolas, Simon Bruderer, Giulia Fischetti, Federico Paruzzo, Giuseppe Toscano, Dominik Graf, Michael Fey, et al. 2023. “Deconvolution of NMR Spectra : A Deep Learning-Based Approach.” Conference poster. In Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023. ZHAW Zürcher Hochschule für Angewandte Wissenschaften. https://doi.org/10.21256/zhaw-27429.
Schmid, Nicolas, et al. “Deconvolution of NMR Spectra : A Deep Learning-Based Approach.” Datalab Symposium, Winterthur, Schweiz, 11. Januar 2023, ZHAW Zürcher Hochschule für Angewandte Wissenschaften, 2023, https://doi.org/10.21256/zhaw-27429.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.