Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-26961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeli, Marcel Louis-
dc.contributor.authorFavre, Sebastien-
dc.contributor.authorMaij, Benjamin-
dc.contributor.authorStajic, Stefan-
dc.contributor.authorBoebel, Manuel-
dc.contributor.authorPoole, Philip John-
dc.contributor.authorSchellenberg, Martin-
dc.contributor.authorKouzinopoulos, Charalampos S.-
dc.date.accessioned2023-02-15T15:54:46Z-
dc.date.available2023-02-15T15:54:46Z-
dc.date.issued2023-02-01-
dc.identifier.issn2079-9268de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/26961-
dc.description.abstractHarvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the design and test results of an energy-autonomous sensor node powered solely by solar cells. The system can cold-start and run in low light conditions (in this case 20 lux and below, using white LEDs as light sources). Four solar cells of 1 cm2 each are used, yielding a total active surface of 4 cm2. The system includes a capacitive sensor that acts as a touch detector, a crystal-accurate real-time clock (RTC), and a Cortex-M3-compatible microcontroller integrating a Bluetooth Low Energy radio (BLE) and the necessary stack for communication. A capacitor of 100 μF is used as energy storage. A low-power comparator monitors the level of the energy storage and powers up the system. The combination of the RTC and touch sensor enables the MCU load to be powered up periodically or using an asynchronous user touch activity. First tests have shown that the system can perform the basic work of cold-starting, sensing, and transmitting frames at +0 dBm, at illuminances as low as 5 lux. Harvesting starts earlier, meaning that the potential for full function below 5 lux is present. The system has also been tested with other light sources. The comparator is a test chip developed for energy harvesting. Other elements are off-the-shelf components. The use of commercially available devices, the reduced number of parts, and the absence of complex storage elements enable a small node to be built in the future, for use in constantly or intermittently poorly lit places.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofJournal of Low Power Electronics and Applicationsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectEnergy harvestingde_CH
dc.subjectEnergy autonomyde_CH
dc.subjectSolar cellde_CH
dc.subjectLow powerde_CH
dc.subjectComparatorde_CH
dc.subjectTouch sensorde_CH
dc.subjectBluetooth low energyde_CH
dc.subjectLow lightde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleEnergy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cellde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Embedded Systems (InES)de_CH
dc.identifier.doi10.3390/jlpea13010012de_CH
dc.identifier.doi10.21256/zhaw-26961-
zhaw.funding.euinfo:eu-repo/grantAgreement/EC/H2020/825464//AutonoMous self powered miniAturized iNtelligent sensor for environmental sensing anD asset tracking in smArt IoT environments/AMANDAde_CH
zhaw.issue1de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start12de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume13de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.monitoring.costperiod2023de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2023_Meli-etal_Energy-autonomous-wireless-sensing-node_jlpea.pdf9.8 MBAdobe PDFThumbnail
View/Open
Show simple item record
Meli, M. L., Favre, S., Maij, B., Stajic, S., Boebel, M., Poole, P. J., Schellenberg, M., & Kouzinopoulos, C. S. (2023). Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell. Journal of Low Power Electronics and Applications, 13(1), 12. https://doi.org/10.3390/jlpea13010012
Meli, M.L. et al. (2023) ‘Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell’, Journal of Low Power Electronics and Applications, 13(1), p. 12. Available at: https://doi.org/10.3390/jlpea13010012.
M. L. Meli et al., “Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell,” Journal of Low Power Electronics and Applications, vol. 13, no. 1, p. 12, Feb. 2023, doi: 10.3390/jlpea13010012.
MELI, Marcel Louis, Sebastien FAVRE, Benjamin MAIJ, Stefan STAJIC, Manuel BOEBEL, Philip John POOLE, Martin SCHELLENBERG und Charalampos S. KOUZINOPOULOS, 2023. Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell. Journal of Low Power Electronics and Applications. 1 Februar 2023. Bd. 13, Nr. 1, S. 12. DOI 10.3390/jlpea13010012
Meli, Marcel Louis, Sebastien Favre, Benjamin Maij, Stefan Stajic, Manuel Boebel, Philip John Poole, Martin Schellenberg, and Charalampos S. Kouzinopoulos. 2023. “Energy Autonomous Wireless Sensing Node Working at 5 Lux from a 4 Cm2 Solar Cell.” Journal of Low Power Electronics and Applications 13 (1): 12. https://doi.org/10.3390/jlpea13010012.
Meli, Marcel Louis, et al. “Energy Autonomous Wireless Sensing Node Working at 5 Lux from a 4 Cm2 Solar Cell.” Journal of Low Power Electronics and Applications, vol. 13, no. 1, Feb. 2023, p. 12, https://doi.org/10.3390/jlpea13010012.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.