Please use this identifier to cite or link to this item:
https://doi.org/10.21256/zhaw-26697
Publication type: | Article in scientific journal |
Type of review: | Peer review (publication) |
Title: | Deconvolution of 1D NMR spectra : a deep learning-based approach |
Authors: | Schmid, N. Bruderer, S. Paruzzo, F. Fischetti, G. Toscano, G. Graf, D. Fey, M. Henrici, A. Ziebart, V. Heitmann, B. Grabner, H. Wegner, J.D. Sigel, R.K.O. Wilhelm, D. |
et. al: | No |
DOI: | 10.1016/j.jmr.2022.107357 10.21256/zhaw-26697 |
Published in: | Journal of Magnetic Resonance |
Volume(Issue): | 347 |
Issue: | 107357 |
Issue Date: | Feb-2023 |
Publisher / Ed. Institution: | Elsevier |
ISSN: | 1090-7807 1096-0856 |
Language: | English |
Subjects: | NMR spectroscopy; Deconvolution; Machine learning; Deep learning |
Subject (DDC): | 006: Special computer methods 530: Physics |
Abstract: | The analysis of nuclear magnetic resonance (NMR) spectra to detect peaks and characterize their parameters, often referred to as deconvolution, is a crucial step in the quantification, elucidation, and verification of the structure of molecular systems. However, deconvolution of 1D NMR spectra is a challenge for both experts and machines. We propose a robust, expert-level quality deep learning-based deconvolution algorithm for 1D experimental NMR spectra. The algorithm is based on a neural network trained on synthetic spectra. Our customized pre-processing and labeling of the synthetic spectra enable the estimation of critical peak parameters. Furthermore, the neural network model transfers well to the experimental spectra and demonstrates low fitting errors and sparse peak lists in challenging scenarios such as crowded, high dynamic range, shoulder peak regions as well as broad peaks. We demonstrate in challenging spectra that the proposed algorithm is superior to expert results. |
URI: | https://digitalcollection.zhaw.ch/handle/11475/26697 |
Fulltext version: | Published version |
License (according to publishing contract): | CC BY 4.0: Attribution 4.0 International |
Departement: | School of Engineering |
Organisational Unit: | Institute of Applied Mathematics and Physics (IAMP) Institute of Data Analysis and Process Design (IDP) |
Published as part of the ZHAW project: | Maschinelles Lernen für NMR-Spektroskopie |
Appears in collections: | Publikationen School of Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022_Schmid-etal_Deconvolution-of-1D-NMR-spectra_JMR.pdf | 2.43 MB | Adobe PDF | ![]() View/Open |
Show full item record
Schmid, N., Bruderer, S., Paruzzo, F., Fischetti, G., Toscano, G., Graf, D., Fey, M., Henrici, A., Ziebart, V., Heitmann, B., Grabner, H., Wegner, J. D., Sigel, R. K. O., & Wilhelm, D. (2023). Deconvolution of 1D NMR spectra : a deep learning-based approach. Journal of Magnetic Resonance, 347(107357). https://doi.org/10.1016/j.jmr.2022.107357
Schmid, N. et al. (2023) ‘Deconvolution of 1D NMR spectra : a deep learning-based approach’, Journal of Magnetic Resonance, 347(107357). Available at: https://doi.org/10.1016/j.jmr.2022.107357.
N. Schmid et al., “Deconvolution of 1D NMR spectra : a deep learning-based approach,” Journal of Magnetic Resonance, vol. 347, no. 107357, Feb. 2023, doi: 10.1016/j.jmr.2022.107357.
SCHMID, N., S. BRUDERER, F. PARUZZO, G. FISCHETTI, G. TOSCANO, D. GRAF, M. FEY, A. HENRICI, V. ZIEBART, B. HEITMANN, H. GRABNER, J.D. WEGNER, R.K.O. SIGEL und D. WILHELM, 2023. Deconvolution of 1D NMR spectra : a deep learning-based approach. Journal of Magnetic Resonance. Februar 2023. Bd. 347, Nr. 107357. DOI 10.1016/j.jmr.2022.107357
Schmid, N., S. Bruderer, F. Paruzzo, G. Fischetti, G. Toscano, D. Graf, M. Fey, et al. 2023. “Deconvolution of 1D NMR Spectra : A Deep Learning-Based Approach.” Journal of Magnetic Resonance 347 (107357). https://doi.org/10.1016/j.jmr.2022.107357.
Schmid, N., et al. “Deconvolution of 1D NMR Spectra : A Deep Learning-Based Approach.” Journal of Magnetic Resonance, vol. 347, no. 107357, Feb. 2023, https://doi.org/10.1016/j.jmr.2022.107357.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.