Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-25558
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Robust vehicle classification based on deep features learning
Autor/-in: Niroomand, Naghmeh
Bach, Christian
Elser, Miriam
et. al: No
DOI: 10.1109/ACCESS.2021.3094366
10.21256/zhaw-25558
Erschienen in: IEEE Access
Band(Heft): 9
Seite(n): 95675
Seiten bis: 95685
Erscheinungsdatum: 2021
Verlag / Hrsg. Institution: IEEE
ISSN: 2169-3536
Sprache: Englisch
Schlagwörter: Automobile; Classification algorithm; Clustering algorithm; Feature extraction; Fuzzy C-means clustering; Semi-supervised learning
Fachgebiet (DDC): 006: Spezielle Computerverfahren
629: Luftfahrt- und Fahrzeugtechnik
Zusammenfassung: This paper aims to introduce a scientific Semi-Supervised Fuzzy C-Mean (SSFCM) clustering approach for passenger cars classification based on the feature learning technique. The proposed method is able to classify passenger vehicles in the micro, small, middle, upper middle, large and luxury classes. The performance of the algorithm is analyzed and compared with an unsupervised fuzzy C-means (FCM) clustering algorithm and Swiss expert classification dataset. Experiment results demonstrate that the classification of SSFCM algorithm has better correlation with expert classification than traditional unsupervised algorithm. These results exhibit that SSFCM can reduce the sensitivity of FCM to the initial cluster centroids with the help of labeled instances. Furthermore, SSFCM results in improved classification performance by using the resampling technique to deal with the multi-class imbalanced problem and eliminate the irrelevant and redundant features.
URI: https://digitalcollection.zhaw.ch/handle/11475/25558
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: School of Management and Law
Organisationseinheit: Fachstelle für Wirtschaftspolitik (FWP)
Enthalten in den Sammlungen:Publikationen School of Management and Law

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2021_Niroomand-etal_Robust-vehicle-classification-deep-features-learning.pdf6.9 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.