Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-25540
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Numerical modeling and design decisions for aerostatic bearings with relatively large nozzle sizes in Magic-Angle Spinning (MAS) systems
Authors: Deb, Rajdeep
Hunkeler, Andreas
Wilhelm, Dirk
Jenny, Patrick
Meier, Beat H.
et. al: No
DOI: 10.1016/j.triboint.2022.107855
10.21256/zhaw-25540
Published in: Tribology International
Volume(Issue): 175
Issue: 107855
Issue Date: Nov-2022
Publisher / Ed. Institution: Elsevier
ISSN: 0301-679X
1879-2464
Language: English
Subjects: Nuclear magnetic resonance; Magic angle spinning; Aerostatic bearing
Subject (DDC): 530: Physics
Abstract: Numerical stability analysis for aerostatic bearings was performed to obtain optimized design parameters for small submillimeter to millimeter range diameter cylindrical rotors. Such rotors are used in nuclear magnetic resonance (NMR) application to rotate sample around an axis inclined by magic angle (54.74đť‘ś) relative to the magnetic field direction at rotational frequencies of about 100 kHz (magic-angle spinning, MAS). The governing Reynolds equation for the fluid film between rotor and bearing was modified for small size aerostatic bearings with relatively large nozzle diameters. The modified Reynolds equation was solved using a finite-volume method to obtain pressure and film thickness around the rotor. This led to the solution of the maximum stable inertial force as a function of rotational frequency and design parameters. The comparison with aerostatic bearings with infinitesimal nozzle sizes was obtained for supported rotor weight and critical vibrational frequency of the rotor. The stable inertial force was found to correspond to a specific nozzle diameter and a specific rotor–bearing clearance. Numerical investigation also shows an enhancement of stable inertial force with decreasing nozzle number or increasing molecular mass of the impinging gas for a specific range of nozzle parameters. Experimental observations further confirmed the role of nozzle diameter, nozzle number and molecular weight of the gas in enhancing the rotor spinning frequency. Further, design decisions were made based on such analysis and were tested for varying rotor size and bearing properties. Using design optimization based on numerical simulation, the maximum frequency of rotation for a home-built 0.4 mm MAS rotor could be enhanced from 25 kHz up to 110 kHz, still below the extrapolation from large rotors.
Further description: The work was supported by an ERC Advanced Grant (B.H.M., grant number 741863, FASTER), and by the Swiss National Science Foundation (B.H.M., grant number 200020_188711).
URI: https://digitalcollection.zhaw.ch/handle/11475/25540
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: School of Engineering
Organisational Unit: Institute of Applied Mathematics and Physics (IAMP)
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Deb-etal_Aerostatic-bearings-MAS-systems.pdf4.42 MBAdobe PDFThumbnail
View/Open
Show full item record
Deb, R., Hunkeler, A., Wilhelm, D., Jenny, P., & Meier, B. H. (2022). Numerical modeling and design decisions for aerostatic bearings with relatively large nozzle sizes in Magic-Angle Spinning (MAS) systems. Tribology International, 175(107855). https://doi.org/10.1016/j.triboint.2022.107855
Deb, R. et al. (2022) ‘Numerical modeling and design decisions for aerostatic bearings with relatively large nozzle sizes in Magic-Angle Spinning (MAS) systems’, Tribology International, 175(107855). Available at: https://doi.org/10.1016/j.triboint.2022.107855.
R. Deb, A. Hunkeler, D. Wilhelm, P. Jenny, and B. H. Meier, “Numerical modeling and design decisions for aerostatic bearings with relatively large nozzle sizes in Magic-Angle Spinning (MAS) systems,” Tribology International, vol. 175, no. 107855, Nov. 2022, doi: 10.1016/j.triboint.2022.107855.
DEB, Rajdeep, Andreas HUNKELER, Dirk WILHELM, Patrick JENNY und Beat H. MEIER, 2022. Numerical modeling and design decisions for aerostatic bearings with relatively large nozzle sizes in Magic-Angle Spinning (MAS) systems. Tribology International. November 2022. Bd. 175, Nr. 107855. DOI 10.1016/j.triboint.2022.107855
Deb, Rajdeep, Andreas Hunkeler, Dirk Wilhelm, Patrick Jenny, and Beat H. Meier. 2022. “Numerical Modeling and Design Decisions for Aerostatic Bearings with Relatively Large Nozzle Sizes in Magic-Angle Spinning (MAS) Systems.” Tribology International 175 (107855). https://doi.org/10.1016/j.triboint.2022.107855.
Deb, Rajdeep, et al. “Numerical Modeling and Design Decisions for Aerostatic Bearings with Relatively Large Nozzle Sizes in Magic-Angle Spinning (MAS) Systems.” Tribology International, vol. 175, no. 107855, Nov. 2022, https://doi.org/10.1016/j.triboint.2022.107855.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.