Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-25030
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Computational literature-based discovery for natural products research : current state and future prospects
Autor/-in: Lardos, Andreas
Aghaebrahimian, Ahmad
Koroleva, Anna
Sidorova, Julia
Wolfram, Evelyn
Anisimova, Maria
Gil, Manuel
et. al: No
DOI: 10.3389/fbinf.2022.827207
10.21256/zhaw-25030
Erschienen in: Frontiers in Bioinformatics
Band(Heft): 2
Heft: 827207
Erscheinungsdatum: 15-Mär-2022
Verlag / Hrsg. Institution: Frontiers Research Foundation
ISSN: 2673-7647
Sprache: Englisch
Schlagwörter: Literature-based discovery; Natural product; Text mining; Knowledge graph; Natural language processing; Swanson; Semantic integration; Ontology
Fachgebiet (DDC): 000: Allgemeines und Wissenschaft
006: Spezielle Computerverfahren
Zusammenfassung: Literature-based discovery (LBD) mines existing literature in order to generate new hypotheses by finding links between previously disconnected pieces of knowledge. Although automated LBD systems are becoming widespread and indispensable in a wide variety of knowledge domains, little has been done to introduce LBD to the field of natural products research. Despite growing knowledge in the natural product domain, most of the accumulated information is found in detached data pools. LBD can facilitate better contextualization and exploitation of this wealth of data, for example by formulating new hypotheses for natural product research, especially in the context of drug discovery and development. Moreover, automated LBD systems promise to accelerate the currently tedious and expensive process of lead identification, optimization, and development. Focusing on natural product research, we briefly reflect the development of automated LBD and summarize its methods and principal data sources. In a thorough review of published use cases of LBD in the biomedical domain, we highlight the immense potential of this data mining approach for natural product research, especially in context with drug discovery or repurposing, mode of action, as well as drug or substance interactions. Most of the 91 natural product-related discoveries in our sample of reported use cases of LBD were addressed at a computer science audience. Therefore, it is the wider goal of this review to introduce automated LBD to researchers who work with natural products and to facilitate the dialogue between this community and the developers of automated LBD systems.
URI: https://digitalcollection.zhaw.ch/handle/11475/25030
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Chemie und Biotechnologie (ICBT)
Institut für Computational Life Sciences (ICLS)
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2022_Lardos-etal_ComputationalLiteratureBasedDiscovery_FrontBioinform.pdf787.86 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.