Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-24987
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Shape trumps size : image-based morphological analysis reveals that the 3D shape discriminates intracranial aneurysm disease status better than aneurysm size
Autor/-in: Juchler, Norman
Schilling, Sabine
Bijlenga, Philippe
Kurtcuoglu, Vartan
Hirsch, Sven
et. al: No
DOI: 10.3389/fneur.2022.809391
10.21256/zhaw-24987
Erschienen in: Frontiers in Neurology
Band(Heft): 13
Heft: 809391
Erscheinungsdatum: 3-Mai-2022
Verlag / Hrsg. Institution: Frontiers Research Foundation
ISSN: 1664-2295
Sprache: Englisch
Schlagwörter: Intracranial aneurysm; Quantitative morphology; Image-based analysis; Rupture status prediction; Shape irregularity
Fachgebiet (DDC): 616: Innere Medizin und Krankheiten
Zusammenfassung: Background: To date, it remains difficult for clinicians to reliably assess the disease status of intracranial aneurysms. As an aneurysm's 3D shape is strongly dependent on the underlying formation processes, it is believed that the presence of certain shape features mirrors the disease status of the aneurysm wall. Currently, clinicians associate irregular shape with wall instability. However, no consensus exists about which shape features reliably predict instability. In this study, we present a benchmark to identify shape features providing the highest predictive power for aneurysm rupture status. Methods: 3D models of aneurysms were extracted from medical imaging data (3D rotational angiographies) using a standardized protocol. For these aneurysm models, we calculated a set of metrics characterizing the 3D shape: Geometry indices (such as undulation, ellipticity and non-sphericity); writhe- and curvature-based metrics; as well as indices based on Zernike moments. Using statistical learning methods, we investigated the association between shape features and aneurysm disease status. This processing was applied to a clinical dataset of 750 aneurysms (261 ruptured, 474 unruptured) registered in the AneuX morphology database. We report here statistical performance metrics [including the area under curve (AUC)] for morphometric models to discriminate between ruptured and unruptured aneurysms. Results: The non-sphericity index NSI (AUC = 0.80), normalized Zernike energies ZsurfN (AUC = 0.80) and the modified writhe-index WL1mean (AUC = 0.78) exhibited the strongest association with rupture status. The combination of predictors further improved the predictive performance (without location: AUC = 0.82, with location AUC = 0.87). The anatomical location was a good predictor for rupture status on its own (AUC = 0.78). Different protocols to isolate the aneurysm dome did not affect the prediction performance. We identified problems regarding generalizability if trained models are applied to datasets with different selection biases. Conclusions: Morphology provided a clear indication of the aneurysm disease status, with parameters measuring shape (especially irregularity) being better predictors than size. Quantitative measurement of shape, alone or in conjunction with information about aneurysm location, has the potential to improve the clinical assessment of intracranial aneurysms.
URI: https://digitalcollection.zhaw.ch/handle/11475/24987
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Computational Life Sciences (ICLS)
Publiziert im Rahmen des ZHAW-Projekts: AneuX
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2022_Juchler-etal_Shape-trumps-size-aneurysm_frontiers.pdf1.7 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.