Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-23482
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFournier, Guillaume J. J.-
dc.contributor.authorMeindl, Max-
dc.contributor.authorSilva, Camilo F.-
dc.contributor.authorGhirardo, Giulio-
dc.contributor.authorBothien, Mirko-
dc.contributor.authorPolifke, Wolfgang-
dc.date.accessioned2021-11-11T15:04:47Z-
dc.date.available2021-11-11T15:04:47Z-
dc.date.issued2021-
dc.identifier.issn0742-4795de_CH
dc.identifier.issn1528-8919de_CH
dc.identifier.urihttps://zenodo.org/record/6546709/de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/23482-
dc.description.abstractHeavy-duty land-based gas turbines are often designed with can-annular combustors, which consist of a set of identical cans, acoustically connected on the upstream side via the compressor plenum, and, downstream, with a small annular gap located at the transition with the first turbine stage. The modeling of this cross-talk area is crucial to predict the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry, Bloch wave theory can be exploited to reduce the system to a longitudinal combustor with a complex-valued equivalent outlet reflection coefficient, which models the annular gap. The present study reviews existing low-order models based purely on geometrical parameters and compares them to 2D Helmholtz simulations. We demonstrate that the modeling of the gap as a thin annulus is not suited for can-annular combustors and that the Rayleigh conductivity model only gives qualitative agreement. We then propose an extension for the equivalent reflection coefficient that accounts not only for geometrical but also flow parameters, by means of a characteristic length. The proposed model is in excellent agreement with 2D simulations and is able to correctly capture the eigenfrequencies of the system. We then perform a Design of Experiments study that allows us to explore various configurations and build correlations for the characteristic length. Finally, we discuss the validity limits of the proposed low-order modeling approach.de_CH
dc.language.isoende_CH
dc.publisherThe American Society of Mechanical Engineersde_CH
dc.relation.ispartofJournal of Engineering for Gas Turbines and Powerde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectThermoacousticsde_CH
dc.subjectModellingde_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc620: Ingenieurwesende_CH
dc.titleLow-order modeling of can-annular combustorsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
dc.identifier.doi10.1115/1.4051954de_CH
dc.identifier.doi10.21256/zhaw-23482-
zhaw.funding.euNode_CH
zhaw.issue12de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start121004de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume143de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2021_Fournier-etal_Low-order-modeling-of-can-annular-combustors.pdf504.33 kBAdobe PDFThumbnail
View/Open
Show simple item record
Fournier, G. J. J., Meindl, M., Silva, C. F., Ghirardo, G., Bothien, M., & Polifke, W. (2021). Low-order modeling of can-annular combustors. Journal of Engineering for Gas Turbines and Power, 143(12), 121004. https://doi.org/10.1115/1.4051954
Fournier, G.J.J. et al. (2021) ‘Low-order modeling of can-annular combustors’, Journal of Engineering for Gas Turbines and Power, 143(12), p. 121004. Available at: https://doi.org/10.1115/1.4051954.
G. J. J. Fournier, M. Meindl, C. F. Silva, G. Ghirardo, M. Bothien, and W. Polifke, “Low-order modeling of can-annular combustors,” Journal of Engineering for Gas Turbines and Power, vol. 143, no. 12, p. 121004, 2021, doi: 10.1115/1.4051954.
FOURNIER, Guillaume J. J., Max MEINDL, Camilo F. SILVA, Giulio GHIRARDO, Mirko BOTHIEN und Wolfgang POLIFKE, 2021. Low-order modeling of can-annular combustors. Journal of Engineering for Gas Turbines and Power [online]. 2021. Bd. 143, Nr. 12, S. 121004. DOI 10.1115/1.4051954. Verfügbar unter: https://zenodo.org/record/6546709/
Fournier, Guillaume J. J., Max Meindl, Camilo F. Silva, Giulio Ghirardo, Mirko Bothien, and Wolfgang Polifke. 2021. “Low-Order Modeling of Can-Annular Combustors.” Journal of Engineering for Gas Turbines and Power 143 (12): 121004. https://doi.org/10.1115/1.4051954.
Fournier, Guillaume J. J., et al. “Low-Order Modeling of Can-Annular Combustors.” Journal of Engineering for Gas Turbines and Power, vol. 143, no. 12, 2021, p. 121004, https://doi.org/10.1115/1.4051954.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.