Full metadata record
DC FieldValueLanguage
dc.contributor.authorGant, Francesco-
dc.contributor.authorGruber, Andrea-
dc.contributor.authorBothien, Mirko-
dc.date.accessioned2021-05-20T14:07:36Z-
dc.date.available2021-05-20T14:07:36Z-
dc.date.issued2020-
dc.identifier.issn0010-2180de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/22516-
dc.description.abstractNumerical simulations of laminar premixed flames burning hydrogen and methane in spontaneous ignition mode are performed by harmonically exciting the reactants’ temperature at the domain inlet. The results are compared to an analytical model representing the same reactive flow configuration. The model provides a simplified but nevertheless accurate representation of reheat combustion taking place in sequential gas turbine combustors. An analytic expression for autoignition flames transfer functions to entropy waves is derived and used to extend transfer function models from the literature. For validation purposes, results from fully compressible Direct Numerical Simulations (DNS), including a complete representation of the fluctuating acoustic and entropic fields of the reactive flow, are analyzed and compared to incompressible Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations that only take into account the fluctuating entropic field. Methane flames are found to be more sensitive to entropic forcing than hydrogen flames, featuring nonlinear phenomena even for low excitation amplitudes. In the linear regime, all flames behave as predicted by the analytical model and the URANS simulations are found to correctly predict the fluctuating entropic field. The transition from linear to nonlinear flame response is described in detail and its physical mechanisms are explained. Comparisons with results available in the literature show good prediction capabilities, both in terms of flame describing function and integrated heat release rate. Limitations of the proposed analytical model with respect to real combustion systems are discussed and a simple correction is proposed.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofCombustion and Flamede_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectFlame transfer functionde_CH
dc.subjectNon-linear flame responsede_CH
dc.subjectEntropy wavesde_CH
dc.subjectReheat combustionde_CH
dc.subjectAutoignition flamesde_CH
dc.subject.ddc621.04: Energietechnikde_CH
dc.titleDevelopment and validation study of a 1D analytical model for the response of reheat flames to entropy wavesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
dc.identifier.doi10.1016/j.combustflame.2020.09.005de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end316de_CH
zhaw.pages.start305de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume222de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedAerodynamicsde_CH
zhaw.webfeedEnergiediskursede_CH
zhaw.webfeedErneuerbare Energiende_CH
zhaw.webfeedRenewable Fuelsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.