Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Matrix evolutions : synthetic correlations and explainable machine learning for constructing robust investment portfolios
Autor/-in: Papenbrock, Jochen
Schwendner, Peter
Jaeger, Markus
Krügel, Stephan
et. al: No
DOI: 10.3905/jfds.2021.1.056
Erschienen in: The Journal of Financial Data Science
Band(Heft): 3
Heft: 2
Seite(n): 51
Seiten bis: 69
Erscheinungsdatum: 13-Mär-2021
Verlag / Hrsg. Institution: Portfolio Management Research
ISSN: 2640-3943
Sprache: Englisch
Schlagwörter: Statistical method; Big data/machine learning; Performance measurement; Portfolio construction
Fachgebiet (DDC): 006: Spezielle Computerverfahren
332.6: Investition
Zusammenfassung: In this article, the authors present a novel and highly flexible concept to simulate correlation matrixes of financial markets. It produces realistic outcomes regarding stylized facts of empirical correlation matrixes and requires no asset return input data. The matrix generation is based on a multiobjective evolutionary algorithm, so the authors call the approach matrix evolutions. It is suitable for parallel implementation and can be accelerated by graphics processing units and quantum-inspired algorithms. The approach is useful for backtesting, pricing, and hedging correlation-dependent investment strategies and financial products. Its potential is demonstrated in a machine learning case study for robust portfolio construction in a multi-asset universe: An explainable machine learning program links the synthetic matrixes to the portfolio volatility spread of hierarchical risk parity versus equal risk contribution.
URI: https://digitalcollection.zhaw.ch/handle/11475/22348
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Management and Law
Organisationseinheit: Institut für Wealth & Asset Management (IWA)
Enthalten in den Sammlungen:Publikationen School of Management and Law

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.