Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-22298
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMerk, Markus-
dc.contributor.authorChirikian, Orlando-
dc.contributor.authorAdlhart, Christian-
dc.date.accessioned2021-04-22T08:37:55Z-
dc.date.available2021-04-22T08:37:55Z-
dc.date.issued2021-
dc.identifier.issn1996-1944de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/22298-
dc.descriptionSpecial Issue "Organic Nanofibers : Fabrication, Properties and Applications"de_CH
dc.description.abstractRecent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofMaterialsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectSelf-assemblyde_CH
dc.subject3D electrospun nanofibrous scaffoldde_CH
dc.subjectNanofiber aerogelsde_CH
dc.subjectTissue engineeringde_CH
dc.subjectElectrospun spongede_CH
dc.subjectPolycaprolactonede_CH
dc.subjectBiodegradationde_CH
dc.subject.ddc610.28: Biomedizin, Biomedizinische Technikde_CH
dc.title3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicinede_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.3390/ma14082006de_CH
dc.identifier.doi10.21256/zhaw-22298-
zhaw.funding.euNode_CH
zhaw.issue8de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start2006de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume14de_CH
zhaw.publication.reviewOpen peer reviewde_CH
zhaw.webfeedFunktionsmaterialien und Nanotechnologiede_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.monitoring.costperiod2021de_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2021_Merk-etal_3D-PCL-Gelatin-Genipin-nanofiber-sponge.pdf2.75 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.