Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-22298
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Open peer review
Titel: 3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicine
Autor/-in: Merk, Markus
Chirikian, Orlando
Adlhart, Christian
et. al: No
DOI: 10.3390/ma14082006
10.21256/zhaw-22298
Erschienen in: Materials
Band(Heft): 14
Heft: 8
Seite(n): 2006
Erscheinungsdatum: 2021
Verlag / Hrsg. Institution: MDPI
ISSN: 1996-1944
Sprache: Englisch
Schlagwörter: Self-assembly; 3D electrospun nanofibrous scaffold; Nanofiber aerogels; Tissue engineering; Electrospun sponge; Polycaprolactone; Biodegradation
Fachgebiet (DDC): 610.28: Biomedizin, Biomedizinische Technik
Zusammenfassung: Recent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.
Weitere Angaben: Special Issue "Organic Nanofibers : Fabrication, Properties and Applications"
URI: https://digitalcollection.zhaw.ch/handle/11475/22298
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Chemie und Biotechnologie (ICBT)
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2021_Merk-etal_3D-PCL-Gelatin-Genipin-nanofiber-sponge.pdf2.75 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Merk, M., Chirikian, O., & Adlhart, C. (2021). 3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicine. Materials, 14(8), 2006. https://doi.org/10.3390/ma14082006
Merk, M., Chirikian, O. and Adlhart, C. (2021) ‘3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicine’, Materials, 14(8), p. 2006. Available at: https://doi.org/10.3390/ma14082006.
M. Merk, O. Chirikian, and C. Adlhart, “3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicine,” Materials, vol. 14, no. 8, p. 2006, 2021, doi: 10.3390/ma14082006.
MERK, Markus, Orlando CHIRIKIAN und Christian ADLHART, 2021. 3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicine. Materials. 2021. Bd. 14, Nr. 8, S. 2006. DOI 10.3390/ma14082006
Merk, Markus, Orlando Chirikian, and Christian Adlhart. 2021. “3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine.” Materials 14 (8): 2006. https://doi.org/10.3390/ma14082006.
Merk, Markus, et al. “3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine.” Materials, vol. 14, no. 8, 2021, p. 2006, https://doi.org/10.3390/ma14082006.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.