Publication type: Conference poster
Type of review: Not specified
Title: Growth behavior of human adipose tissue-derived stromal/stem cells in single-use spinner flasks : numerical and experimental investigations
Authors: Jossen, Valentin
Eibl-Schindler, Regine
Kraume, Matthias
Eibl, Dieter
et. al: No
Conference details: ECI: Single Use Technologies III: Scientific and Technological Advancements, Utah, USA, 23-26 September 2018
Issue Date: Sep-2018
Language: English
Subject (DDC): 610.28: Biomedicine, biomedical engineering
660: Chemical engineering
Abstract: Human adipose tissue-derived stromal/stem cells (hASC) represent a valuable source of cells for clinical applications, especially in the field of regenerative medicine. Therefore, it comes as no surprise that interest in hASCs has increased greatly over the last decade. However, in order to use hASCs successfully in clinical applications, in vitro expansion is required. Single-use bioreactors in combination with microcarriers (MC) have been shown to be suitable systems for this task (1-3). However, hASCs are prone to higher shear sensitivity than conventional cell lines (e.g. CHO, BHK) that are normally expanded in these systems. Hence, the goal of this study was to investigate the influence of different shear stress levels on the growth of hASCs in small scale single-use spinner flasks. For this purpose, Computational Fluid Dynamics simulations based on a Euler-Euler and Euler-Lagrange approach were performed to predict the hydrodynamic stresses (0.06 – 0.87 Pa), the residence times (0.4 – 7.3 s) and the circulation times (1.6 - 16.6 s) of the MCs in various high shear zones. The numerical findings were combined with experimental data from cultivation studies (0.29 – 1.1∙106 hASC/mL) in order to develop a segregated mathematical growth model for the prediction of MC-associated hASC growth in small scale single-use spinner flasks.
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: Life Sciences and Facility Management
Organisational Unit: Institute of Chemistry and Biotechnology (ICBT)
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.