Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-21530
Publikationstyp: Konferenz: Paper
Art der Begutachtung: Peer review (Publikation)
Titel: Named entity disambiguation at scale
Autor/-in: Aghaebrahimian, Ahmad
Cieliebak, Mark
et. al: No
DOI: 10.1007/978-3-030-58309-5_8
10.21256/zhaw-21530
Tagungsband: Artificial Neural Networks in Pattern Recognition
Herausgeber/-in des übergeordneten Werkes: Schilling, Frank-Peter
Stadelmann, Thilo
Seite(n): 102
Seiten bis: 110
Angaben zur Konferenz: 9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020
Erscheinungsdatum: 2020
Reihe: Lecture Notes in Computer Science
Reihenzählung: 12294
Verlag / Hrsg. Institution: Springer
Verlag / Hrsg. Institution: Cham
Sprache: Englisch
Schlagwörter: Machine learning; Named entity disambiguation; Alias detection; Deep learning
Fachgebiet (DDC): 006: Spezielle Computerverfahren
Zusammenfassung: Named Entity Disambiguation (NED) is a crucial task in many Natural Language Processing applications such as entity linking, record linkage, knowledge base construction, or relation extraction, to name a few. The task in NED is to map textual variations of a named entity to its formal name. It has been shown that parameterless models for NED do not generalize to other domains very well. On the other hand, parametric learning models do not scale well when the number of formal names expands above the order of thousands or more. To tackle this problem, we propose a deep architecture with superior performance on NED and introduce a strategy to scale it to hundreds of thousands of formal names. Our experiments on several datasets for alias detection demonstrate that our system is capable of obtaining superior results with a large margin compared to other state-of-the-art systems.
URI: https://digitalcollection.zhaw.ch/handle/11475/21530
Volltext Version: Akzeptierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institut für Angewandte Informationstechnologie (InIT)
Publiziert im Rahmen des ZHAW-Projekts: AuSuM - Automatic Supply Chain Monitoring
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2020_Aghaebrahimian-Cieliebak_Named-entity-disambiguation-at-scale.pdfAccepted Version141.79 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.