Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-1563
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Smart material concept : reversible microstructural self-regeneration for catalytic applications
Autor/-in: Burnat, Dariusz Artur
Kontic, Roman
Holzer, Lorenz
Steiger, Patrick
Ferri, Davide
Heel, Andre
DOI: 10.21256/zhaw-1563
10.1039/C6TA03417A
Erschienen in: Journal of Materials Chemistry A
Band(Heft): 4
Heft: 30
Seite(n): 11939
Seiten bis: 11948
Erscheinungsdatum: 2016
Verlag / Hrsg. Institution: Royal Society of Chemistry
ISSN: 2050-7488
Sprache: Englisch
Schlagwörter: Map; Self-regeneration; Smart Materials; SOFC
Fachgebiet (DDC): 540: Chemie
620.11: Werkstoffe
Zusammenfassung: This paper presents a proof-of-concept study and demonstrates the next generation of a “smart” catalyst material, applicable to high temperature catalysis and electro-catalysis such as gas processing and as a catalyst for solid oxide cells. A modified citrate-gel technique was developed for the synthesis of LaxSr1−1.5xTi1−yNiyO3−δ. This method allowed the synthesis of single phase materials with a high specific surface area, after the first calcination step at temperatures as low as 650°C. Up to 5 at% of nickel could be incorporated into the perovskite structure at this low calcination temperature. X-ray powder diffraction and microscopy techniques have proven the exsolution of nickel nanoclusters under low oxygen partial pressure. The amount of exsoluted nickel nanoparticles was sensitive to surface finishing, whereby much more exsoluted nanoparticles were observed on pre-treated and polished surfaces as compared to original ones. Increasing A-site deficiency leads to a larger number of nickel particles on the surface, indicating a destabilizing influence of the A-site vacancies on the B-site metal cations. Repetitive redox cycles prove that the nickel exsolution and re-integration is a fully reversible process. These materials working in a cyclic and repetitive way may overcome the drawbacks of currently used conventional catalysts used for high temperature systems and overcome major degradation issues related to catalyst poisoning and coarsening-induced aging.
URI: https://digitalcollection.zhaw.ch/handle/11475/2116
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Institute of Materials and Process Engineering (IMPE)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2016_Burnat_Smart material concept_Journal of Materials Chemistry A.pdf1.45 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Burnat, D. A., Kontic, R., Holzer, L., Steiger, P., Ferri, D., & Heel, A. (2016). Smart material concept : reversible microstructural self-regeneration for catalytic applications. Journal of Materials Chemistry A, 4(30), 11939–11948. https://doi.org/10.21256/zhaw-1563
Burnat, D.A. et al. (2016) ‘Smart material concept : reversible microstructural self-regeneration for catalytic applications’, Journal of Materials Chemistry A, 4(30), pp. 11939–11948. Available at: https://doi.org/10.21256/zhaw-1563.
D. A. Burnat, R. Kontic, L. Holzer, P. Steiger, D. Ferri, and A. Heel, “Smart material concept : reversible microstructural self-regeneration for catalytic applications,” Journal of Materials Chemistry A, vol. 4, no. 30, pp. 11939–11948, 2016, doi: 10.21256/zhaw-1563.
BURNAT, Dariusz Artur, Roman KONTIC, Lorenz HOLZER, Patrick STEIGER, Davide FERRI und Andre HEEL, 2016. Smart material concept : reversible microstructural self-regeneration for catalytic applications. Journal of Materials Chemistry A. 2016. Bd. 4, Nr. 30, S. 11939–11948. DOI 10.21256/zhaw-1563
Burnat, Dariusz Artur, Roman Kontic, Lorenz Holzer, Patrick Steiger, Davide Ferri, and Andre Heel. 2016. “Smart Material Concept : Reversible Microstructural Self-Regeneration for Catalytic Applications.” Journal of Materials Chemistry A 4 (30): 11939–48. https://doi.org/10.21256/zhaw-1563.
Burnat, Dariusz Artur, et al. “Smart Material Concept : Reversible Microstructural Self-Regeneration for Catalytic Applications.” Journal of Materials Chemistry A, vol. 4, no. 30, 2016, pp. 11939–48, https://doi.org/10.21256/zhaw-1563.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.