Publikationstyp: Konferenz: Paper
Art der Begutachtung: Peer review (Publikation)
Titel: A hybrid deep learning approach for forecasting air temperature
Autor/-in: Gygax, Gregory
Schüle, Martin
et. al: No
DOI: 10.1007/978-3-030-58309-5_19
Tagungsband: Artificial Neural Networks in Pattern Recognition
Herausgeber/-in des übergeordneten Werkes: Schilling, Frank-Peter
Stadelmann, Thilo
Seiten: 235
Seiten bis: 246
Angaben zur Konferenz: 9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020
Erscheinungsdatum: 2-Sep-2020
Reihe: Lecture Notes in Computer Science
Reihenzählung: 12294
Verlag / Hrsg. Institution: Springer
Verlag / Hrsg. Institution: Cham
ISBN: 978-3-030-58308-8
978-3-030-58309-5
Sprache: Englisch
Schlagwörter: Machine learning; Deep learning; Weather prediction
Fachgebiet (DDC): 006: Spezielle Computerverfahren
551: Geologie und Hydrologie
Zusammenfassung: Forecasting the weather is a great scientific challenge. Physics-based, numerical weather prediction (NWP) models have been developed for decades by large research teams and the accuracy of forecasts has been steadily increased. Yet, recently, more and more data-driven machine learning approaches to weather forecasting are being developed. In this contribution we aim to develop an approach that combines the advantages of both methodologies, that is, we develop a deep learning model to predict air temperature that is trained both on NWP models and local weather data. We evaluate the approach for 249 weather station sites in Switzerland and find that the model outperfoms the NWP models on short time-scales and in some geographically distinct regions of Switzerland.
URI: https://digitalcollection.zhaw.ch/handle/11475/20891
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: Life Sciences und Facility Management
Organisationseinheit: Institut für Computational Life Sciences (ICLS)
Publiziert im Rahmen des ZHAW-Projekts: An integrated modelling and learning framework for real-time online decision assistance in Swiss agriculture
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.