Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-20501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWeyland, Mathias-
dc.contributor.authorThumser-Henner, Pauline-
dc.contributor.authorRohrer Bley, Carla-
dc.contributor.authorUlzega, Simone-
dc.contributor.authorPetri-Fink, Alke-
dc.contributor.authorLattuada, Marco-
dc.contributor.authorScheidegger, Stephan-
dc.contributor.authorFüchslin, Rudolf Marcel-
dc.date.accessioned2020-09-17T12:53:58Z-
dc.date.available2020-09-17T12:53:58Z-
dc.date.issued2019-
dc.identifier.isbn978-3-030-21732-7de_CH
dc.identifier.isbn978-3-030-21733-4de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/20501-
dc.description.abstractIn this work, a method is presented to map a set of experimentally obtained, time-resolved distributions to a dynamic model. Specifically, time-resolved comet assay readouts of cancer cells after application of ionizing radiation are mapped to the Multi-Hit-Repair model, a radiobiologically motivated dynamic model used to predict DNA damage and repair. Differential evolution is used for parameter-search to showcase the potential of this method, producing a prediction close to the experimental measurement. The results obtained from the parameter search are used to characterize aspects of the repair process. The method is compared to prior attempts of finding model parameters from dose-response curves, revealing that calibration is required to render the two comparable.de_CH
dc.language.isoende_CH
dc.publisherSpringerde_CH
dc.relation.ispartofseriesCommunications in Computer and Information Sciencede_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectComputational medicinede_CH
dc.subjectDynamic DNA damage/repair modelde_CH
dc.subjectComet assay (single cell gel electrophoresis)de_CH
dc.subjectDifferential evolutionde_CH
dc.subject.ddc572: Biochemiede_CH
dc.titleDynamic DNA damage and repair modelling : bridging the gap between experimental damage readout and model structurede_CH
dc.typeKonferenz: Paperde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Computational Life Sciences (ICLS)de_CH
zhaw.publisher.placeChamde_CH
dc.identifier.doi10.1007/978-3-030-21733-4_10de_CH
dc.identifier.doi10.21256/zhaw-20501-
zhaw.conference.detailsXIII International Workshop on Artificial Life and Evolutionary Computation (WIVACE), Parma, Italy, 10-12 September 2018de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end137de_CH
zhaw.pages.start127de_CH
zhaw.parentwork.editorCagnoni, Stefano-
zhaw.parentwork.editorMordonini, Monica-
zhaw.parentwork.editorPecori, Riccardo-
zhaw.parentwork.editorRoli, Andrea-
zhaw.parentwork.editorVillani, Marco-
zhaw.publication.statusacceptedVersionde_CH
zhaw.series.number900de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.title.proceedingsArtificial Life and Evolutionary Computationde_CH
zhaw.funding.snf163435de_CH
zhaw.webfeedBiomedical Simulationde_CH
zhaw.funding.zhawPhantom- and Model-based Optimisation of Medical Imaging Modalitiesde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2019_Weyland-etal_Dynamic-DNA-damage-and-repair-modeling.pdfAccepted Version226.27 kBAdobe PDFThumbnail
View/Open
Show simple item record
Weyland, M., Thumser-Henner, P., Rohrer Bley, C., Ulzega, S., Petri-Fink, A., Lattuada, M., Scheidegger, S., & Füchslin, R. M. (2019). Dynamic DNA damage and repair modelling : bridging the gap between experimental damage readout and model structure [Conference paper]. In S. Cagnoni, M. Mordonini, R. Pecori, A. Roli, & M. Villani (Eds.), Artificial Life and Evolutionary Computation (pp. 127–137). Springer. https://doi.org/10.1007/978-3-030-21733-4_10
Weyland, M. et al. (2019) ‘Dynamic DNA damage and repair modelling : bridging the gap between experimental damage readout and model structure’, in S. Cagnoni et al. (eds) Artificial Life and Evolutionary Computation. Cham: Springer, pp. 127–137. Available at: https://doi.org/10.1007/978-3-030-21733-4_10.
M. Weyland et al., “Dynamic DNA damage and repair modelling : bridging the gap between experimental damage readout and model structure,” in Artificial Life and Evolutionary Computation, 2019, pp. 127–137. doi: 10.1007/978-3-030-21733-4_10.
WEYLAND, Mathias, Pauline THUMSER-HENNER, Carla ROHRER BLEY, Simone ULZEGA, Alke PETRI-FINK, Marco LATTUADA, Stephan SCHEIDEGGER und Rudolf Marcel FÜCHSLIN, 2019. Dynamic DNA damage and repair modelling : bridging the gap between experimental damage readout and model structure. In: Stefano CAGNONI, Monica MORDONINI, Riccardo PECORI, Andrea ROLI und Marco VILLANI (Hrsg.), Artificial Life and Evolutionary Computation. Conference paper. Cham: Springer. 2019. S. 127–137. ISBN 978-3-030-21732-7
Weyland, Mathias, Pauline Thumser-Henner, Carla Rohrer Bley, Simone Ulzega, Alke Petri-Fink, Marco Lattuada, Stephan Scheidegger, and Rudolf Marcel Füchslin. 2019. “Dynamic DNA Damage and Repair Modelling : Bridging the Gap between Experimental Damage Readout and Model Structure.” Conference paper. In Artificial Life and Evolutionary Computation, edited by Stefano Cagnoni, Monica Mordonini, Riccardo Pecori, Andrea Roli, and Marco Villani, 127–37. Cham: Springer. https://doi.org/10.1007/978-3-030-21733-4_10.
Weyland, Mathias, et al. “Dynamic DNA Damage and Repair Modelling : Bridging the Gap between Experimental Damage Readout and Model Structure.” Artificial Life and Evolutionary Computation, edited by Stefano Cagnoni et al., Springer, 2019, pp. 127–37, https://doi.org/10.1007/978-3-030-21733-4_10.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.