Full metadata record
DC FieldValueLanguage
dc.contributor.authorSteiger, Patrick-
dc.contributor.authorMadi, Hossein-
dc.contributor.authorMai, Andreas-
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorVan Herle, Jan-
dc.contributor.authorKröcher, Oliver-
dc.contributor.authorHeel, Andre-
dc.contributor.authorFerri, Davide-
dc.date.accessioned2020-02-13T15:54:31Z-
dc.date.available2020-02-13T15:54:31Z-
dc.date.issued2019-
dc.identifier.issn0897-4756de_CH
dc.identifier.issn1520-5002de_CH
dc.identifier.urihttps://www.dora.lib4ri.ch/psi/islandora/object/psi:23399de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19424-
dc.description.abstractThe perovskite-type mixed oxide La0.3Sr0.55Ti0.95Ni0.05O3−δ (LSTN) is demonstrated to exhibit the remarkable property of structural regeneration, where Ni can be reversibly exsoluted from the host perovskite lattice resulting in a regenerable Ni catalyst for solid oxide fuel cell anode applications. Results of catalytic tests for the water gas shift reaction and electrochemical investigations on a button-sized fuel cell demonstrate the redox stability of LSTN, its potential application in solid oxide fuel cells, and its ability to recover catalytic activity completely after sulfur poisoning. Nickel segregation was characterized and quantified on powder samples by means of electron microscopy, X-ray diffraction, X-ray absorption spectroscopy, and temperature-programmed reduction–reoxidation cycles. Catalyst stability was much improved compared to impregnated Ni/La0.3Sr0.55TiO3−δ and Ni/Y0.08Zr0.92O2 anode materials. A full cell was tested under both open circuit voltage and polarized conditions, showing a stable cell voltage over redox cycles as well as periods of reverse potential and current overload. The area-specific resistance of the anode layer was as low as 0.58 Ω cm2 at 850 °C. This allows LSTN to be applied in redox-stable solid oxide fuel cell anodes and reversible segregation of Ni to be exploited for fast recovery from sulfur poisoning.de_CH
dc.language.isoende_CH
dc.publisherAmerican Chemical Societyde_CH
dc.relation.ispartofChemistry of Materialsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc620.11: Werkstoffede_CH
dc.titleSulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickelde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1021/acs.chemmater.8b03669de_CH
zhaw.funding.euNode_CH
zhaw.issue3de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end758de_CH
zhaw.pages.start748de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume31de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedMicrostructure analysisde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Steiger, P., Madi, H., Mai, A., Holzer, L., Van Herle, J., Kröcher, O., Heel, A., & Ferri, D. (2019). Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel. Chemistry of Materials, 31(3), 748–758. https://doi.org/10.1021/acs.chemmater.8b03669
Steiger, P. et al. (2019) ‘Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel’, Chemistry of Materials, 31(3), pp. 748–758. Available at: https://doi.org/10.1021/acs.chemmater.8b03669.
P. Steiger et al., “Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel,” Chemistry of Materials, vol. 31, no. 3, pp. 748–758, 2019, doi: 10.1021/acs.chemmater.8b03669.
STEIGER, Patrick, Hossein MADI, Andreas MAI, Lorenz HOLZER, Jan VAN HERLE, Oliver KRÖCHER, Andre HEEL und Davide FERRI, 2019. Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel. Chemistry of Materials [online]. 2019. Bd. 31, Nr. 3, S. 748–758. DOI 10.1021/acs.chemmater.8b03669. Verfügbar unter: https://www.dora.lib4ri.ch/psi/islandora/object/psi:23399
Steiger, Patrick, Hossein Madi, Andreas Mai, Lorenz Holzer, Jan Van Herle, Oliver Kröcher, Andre Heel, and Davide Ferri. 2019. “Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel.” Chemistry of Materials 31 (3): 748–58. https://doi.org/10.1021/acs.chemmater.8b03669.
Steiger, Patrick, et al. “Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel.” Chemistry of Materials, vol. 31, no. 3, 2019, pp. 748–58, https://doi.org/10.1021/acs.chemmater.8b03669.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.