Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-19328
Publikationstyp: Konferenz: Paper
Art der Begutachtung: Peer review (Publikation)
Titel: Advanced design and optimization of wind turbines based on turbine theories
Autor/-in: Zhang, Zhengji
et. al: No
DOI: 10.21256/zhaw-19328
Angaben zur Konferenz: 3rd International Conference on Power and Energy Engineering (ICPEE 2019), Quingdao, China, October 25-27, 2019
Erscheinungsdatum: 26-Okt-2019
Verlag / Hrsg. Institution: ZHAW Zürcher Hochschule für Angewandte Wissenschaften
Sprache: Englisch
Schlagwörter: Wind power; Turbine theory
Fachgebiet (DDC): 621.04: Energietechnik
Zusammenfassung: A review of wind turbine technology showed that many flaws in both the flow models and computations are involved in the traditional fundamentals. While traditional methods for design and computation are all based on the airfoil theory, a new method based on turbine theories has been developed and is shown to be ideally applicable. Against the traditional method, the new method also considers non-uniform pressure distribution in flows downstream of the rotor plane and is thus highly accurate. The blade efficiency or tip swirl number has been introduced. It enables computation of the power coefficient to be very reasonable. Its optimum can be directly applied to the geometrical design of turbine blades. Between the tip speed ratio blade efficiency and power coefficient cp, a closed solution of both the optimum design and the operation of wind turbines exists. It is demonstrated that the maximum achievable power coefficient can be 10% larger than that predicted by all previous theories.
URI: https://digitalcollection.zhaw.ch/handle/11475/19328
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institut für Energiesysteme und Fluid-Engineering (IEFE)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ICPEE 2019 QingDao.pdf488.89 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.