Title: On the equivalence of a system dynamic method for modelling multiphysics systems and the Tetrahedron-of-State-Concept within the Bond graph modelling approach
Authors : Boiger, Gernot Kurt
et. al : No
Proceedings: International conference on multiphysics 2019 : abstract booklet
Pages : 20
Conference details: Multiphysics 2019, Dubai, UAE, 14- 15 December 2019
Publisher / Ed. Institution : International Society of Multiphysics
Publisher / Ed. Institution: London
Issue Date: 2019
License (according to publishing contract) : Licence according to publishing contract
Type of review: Peer review (abstract)
Language : English
Subjects : System dynamic modelling; Tetrahedron of state; multiphysics systems; Boomt graphs
Subject (DDC) : 530: Physics
Abstract: A system-dynamic method, best suited to model simple, yet highly dynamic multiphysics- systems has been investigated and re-organised such that a 1:1 equivalence to the tetrahedron-of-state-concept within the well known bond graph modelling approach can be stated. While in ‘bond graph literature’ Gibbs fundamental equation is usually cited merely in the context of modelling thermodynamic systems, it can be shown that Gibbs fundamental concept constitutes the basis and justification for modelling any multiphysics-system with either bond graph- or system-dynamic methodology. Thus both approaches are valid for linear- and angular-mechanical-, electrodynamic-, hydraulic/pneumatic- and with limitations concerning the concept of inertance/inductivity for thermodynamic- and chemical-systems. While being most practical and efficient for zero or one-dimensional problems, there is no theoretical limitation towards modelling two or three- dimensional cases with either method. Upon deeper investigation it becomes obvious that a thorough definition of the analogies and differences between capacitive- and inductive- systems is essential for working out the compatibility of system-dynamic approaches to the somewhat older and better-established bond graph methods. Furthermore it can be shown that if capacitive- and inductive-systems are clearly distinguished, typical system-dynamic elements such as containers filled with conservative quantities, capacities, inductivities, potentials, equations of state and fluxes, find their related counterparts within the tetrahedron-of-state-concepts of momentum, displacement, general flow, effort, resistance, inertance and compliance non-respectively. Selected examples of first order capacitive-inductive, mechanical-, fluid- and electro-dynamic-systems, serve well to demonstrate the easy applicability, efficiency as well as general validity of the modelling- concepts in discussion.
Departement: School of Engineering
Publication type: Conference other
ISSN: 2409-7527
2409-1669
URI: http://www.multiphysics.org/MULTIPHYSICS%202019-Abstracts.pdf
https://digitalcollection.zhaw.ch/handle/11475/19076
Appears in Collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.