Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-18965
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeukom, Martin T.-
dc.contributor.authorSchiller, Andreas-
dc.contributor.authorZüfle, Simon-
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorÁvila, Jorge-
dc.contributor.authorPérez-del-Rey, Daniel-
dc.contributor.authorDreessen, Chris-
dc.contributor.authorZanoni, Kassio P.S.-
dc.contributor.authorSessolo, Michele-
dc.contributor.authorBolink, Henk J.-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2019-12-19T11:01:51Z-
dc.date.available2019-12-19T11:01:51Z-
dc.date.issued2019-06-10-
dc.identifier.issn1944-8244de_CH
dc.identifier.issn1944-8252de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/18965-
dc.description​This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.9b04991de_CH
dc.description.abstractA variety of experiments on vacuum-deposited methylammonium lead iodide perovskite solar cells are presented, including JV curves with different scan rates, light intensity-dependent open-circuit voltage, impedance spectra, intensity-modulated photocurrent spectra, transient photocurrents, and transient voltage step responses. All these experimental data sets are successfully reproduced by a charge drift-diffusion simulation model incorporating mobile ions and charge traps using a single set of parameters. While previous modeling studies focused on a single experimental technique, we combine steady-state, transient, and frequency-domain simulations and measurements. Our study is an important step toward quantitative simulation of perovskite solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the transient current upon voltage turn-on in the dark reveals that the charge injection properties of the interfaces are triggered by the accumulation of mobile ionic defects. We show that the current rise of voltage step experiments allow for conclusions about the recombination at the interface. Whether one or two mobile ionic species are used in the model has only a minor influence on the observed effects. A delayed current rise observed upon reversing the bias from +3 to -3 V in the dark cannot be reproduced yet by our drift-diffusion model. We speculate that a reversible chemical reaction of mobile ions with the contact material may be the cause of this effect, thus requiring a future model extension. A parameter variation is performed in order to understand the performance-limiting factors of the device under investigation.de_CH
dc.language.isoende_CH
dc.publisherAmerican Chemical Societyde_CH
dc.relation.ispartofACS Applied Materials & Interfacesde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectIMPSde_CH
dc.subjectDrift-diffusion modelingde_CH
dc.subjectHysteresisde_CH
dc.subjectImpedance spectroscopyde_CH
dc.subjectMobile ionsde_CH
dc.subjectPerovskite solar cellsde_CH
dc.subjectTransient photo-currentde_CH
dc.subjectTrapsde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleConsistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domainde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1021/acsami.9b04991de_CH
dc.identifier.doi10.21256/zhaw-18965-
dc.identifier.pmid31180209de_CH
zhaw.funding.euNot specifiedde_CH
zhaw.issue26de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end23328de_CH
zhaw.pages.start23320de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume11de_CH
zhaw.embargo.end2020-06-11de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf153952de_CH
zhaw.webfeedPhotonicsde_CH
zhaw.funding.zhawPV2050: Simulation and Characterizationde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
Neukom_ACSApplMaterInt xx,xxx 2019_Supp.pdfSupporting Information1.96 MBAdobe PDFThumbnail
View/Open
PSC_Sim_proof.pdfRevised Manuscript980.08 kBAdobe PDFThumbnail
View/Open
Show simple item record
Neukom, M. T., Schiller, A., Züfle, S., Knapp, E., Ávila, J., Pérez-del-Rey, D., Dreessen, C., Zanoni, K. P. S., Sessolo, M., Bolink, H. J., & Ruhstaller, B. (2019). Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain. ACS Applied Materials & Interfaces, 11(26), 23320–23328. https://doi.org/10.1021/acsami.9b04991
Neukom, M.T. et al. (2019) ‘Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain’, ACS Applied Materials & Interfaces, 11(26), pp. 23320–23328. Available at: https://doi.org/10.1021/acsami.9b04991.
M. T. Neukom et al., “Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain,” ACS Applied Materials & Interfaces, vol. 11, no. 26, pp. 23320–23328, Jun. 2019, doi: 10.1021/acsami.9b04991.
NEUKOM, Martin T., Andreas SCHILLER, Simon ZÜFLE, Evelyne KNAPP, Jorge ÁVILA, Daniel PÉREZ-DEL-REY, Chris DREESSEN, Kassio P.S. ZANONI, Michele SESSOLO, Henk J. BOLINK und Beat RUHSTALLER, 2019. Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain. ACS Applied Materials & Interfaces. 10 Juni 2019. Bd. 11, Nr. 26, S. 23320–23328. DOI 10.1021/acsami.9b04991
Neukom, Martin T., Andreas Schiller, Simon Züfle, Evelyne Knapp, Jorge Ávila, Daniel Pérez-del-Rey, Chris Dreessen, et al. 2019. “Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain.” ACS Applied Materials & Interfaces 11 (26): 23320–28. https://doi.org/10.1021/acsami.9b04991.
Neukom, Martin T., et al. “Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain.” ACS Applied Materials & Interfaces, vol. 11, no. 26, June 2019, pp. 23320–28, https://doi.org/10.1021/acsami.9b04991.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.