Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
Titel: Exploiting natural language structures in software informal documentation
Autor/-in: Di Sorbo, Andrea
Panichella, Sebastiano
Visaggio, Corrado Aaron
Di Penta, Massimiliano
Canfora, Gerardo
Gall, Harald C.
et. al: No
Erschienen in: IEEE Transactions on Software Engineering
Verlag / Hrsg. Institution: IEEE
Erscheinungsdatum: 2019
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Art der Begutachtung: Peer review (Publikation)
Sprache: Englisch
Fachgebiet (DDC): 005: Computerprogrammierung, Programme und Daten
Zusammenfassung: Communication means, such as issue trackers, mailing lists, Q&A forums, and app reviews, are premier means of collaboration among developers, and between developers and end-users. Analyzing such sources of information is crucial to build recommenders for developers, for example suggesting experts, re-documenting source code, or transforming user feedback in maintenance and evolution strategies for developers. To ease this analysis, in previous work we proposed DECA (Development Emails Content Analyzer), a tool based on Natural Language Parsing that classifies with high precision development emails' fragments according to their purpose. However, DECA has to be trained through a manual tagging of relevant patterns, which is often effort-intensive, error-prone and requires specific expertise in natural language parsing. In this paper, we first show, with a study involving Master's and Ph.D. students, the extent to which producing rules for identifying such patterns requires effort, depending on the nature and complexity of patterns. Then, we propose an approach, named NEON (Nlp-based softwarE dOcumentation aNalyzer), that automatically mines such rules, minimizing the manual effort. We assess the performances of NEON in the analysis and classification of mobile app reviews, developers discussions, and issues. NEON simplifies the patterns' identification and rules' definition processes, allowing a savings of more than 70% of the time otherwise spent on performing such activities manually. Results also show that NEON-generated rules are close to the manually identified ones, achieving comparable recall.
Weitere Angaben: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Departement: School of Engineering
Organisationseinheit: Institut für Angewandte Informationstechnologie (InIT)
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
DOI: 10.1109/TSE.2019.2930519
ISSN: 0098-5589
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
08769918.pdf8.13 MBAdobe PDFMiniaturbild

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.