Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-18294
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVetter, Roman-
dc.contributor.authorSchumacher, Jürgen O.-
dc.date.accessioned2019-09-26T13:32:59Z-
dc.date.available2019-09-26T13:32:59Z-
dc.date.issued2019-10-31-
dc.identifier.issn0378-7753de_CH
dc.identifier.issn1873-2755de_CH
dc.identifier.otherarXiv:1811.10091de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/18294-
dc.description.abstractEver since modeling has become a mature part of proton exchange membrane fuel cell (PEMFC) research and development, it has been plagued by significant uncertainty lying in the detailed knowledge of material properties required. Experimental data published on several transport coefficients are scattered over orders of magnitude, even for the most extensively studied materials such as Nafion membranes, for instance. For PEMFC performance models to become predictive, high-quality input data is essential. In this bipartite paper series, we determine the most critical transport parameters for which accurate experimental characterization is required in order to enable performance prediction with sufficient confidence from small to large current densities. In the first part, a macro-homogeneous two-phase membrane-electrode assembly model is furnished with a comprehensive set of material parameterizations from the experimental and modeling literature. The computational model is applied to demonstrate the large spread in performance prediction resulting from experimentally measured or validated material parameterizations alone. The result of this is a ranking list of material properties, sorted by induced spread in the fuel cell performance curve. The three most influential parameters in this list stem from membrane properties: The Fickean diffusivity of dissolved water, the protonic conductivity and the electro-osmotic drag coefficient.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofJournal of Power Sourcesde_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectPolymer electrolyte membranede_CH
dc.subjectFuel cellde_CH
dc.subjectModelde_CH
dc.subjectParameterizationde_CH
dc.subjectUncertainty analysisde_CH
dc.subjectExperimental characterizationde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleExperimental parameter uncertainty in proton exchange membrane fuel cell modeling - part I : scatter in material parameterizationde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.jpowsour.2019.227018de_CH
dc.identifier.doi10.21256/zhaw-18294-
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start227018de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume438de_CH
zhaw.embargo.end2021-05-03de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf153790de_CH
zhaw.webfeedErneuerbare Energiende_CH
zhaw.funding.zhawSCCER-Mobilityde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2019_Vetter_Experimental-parameter-uncertainty-part-I.pdfAccepted Version1.31 MBAdobe PDFThumbnail
View/Open
Show simple item record
Vetter, R., & Schumacher, J. O. (2019). Experimental parameter uncertainty in proton exchange membrane fuel cell modeling - part I : scatter in material parameterization. Journal of Power Sources, 438, 227018. https://doi.org/10.1016/j.jpowsour.2019.227018
Vetter, R. and Schumacher, J.O. (2019) ‘Experimental parameter uncertainty in proton exchange membrane fuel cell modeling - part I : scatter in material parameterization’, Journal of Power Sources, 438, p. 227018. Available at: https://doi.org/10.1016/j.jpowsour.2019.227018.
R. Vetter and J. O. Schumacher, “Experimental parameter uncertainty in proton exchange membrane fuel cell modeling - part I : scatter in material parameterization,” Journal of Power Sources, vol. 438, p. 227018, Oct. 2019, doi: 10.1016/j.jpowsour.2019.227018.
VETTER, Roman und Jürgen O. SCHUMACHER, 2019. Experimental parameter uncertainty in proton exchange membrane fuel cell modeling - part I : scatter in material parameterization. Journal of Power Sources. 31 Oktober 2019. Bd. 438, S. 227018. DOI 10.1016/j.jpowsour.2019.227018
Vetter, Roman, and Jürgen O. Schumacher. 2019. “Experimental Parameter Uncertainty in Proton Exchange Membrane Fuel Cell Modeling - Part I : Scatter in Material Parameterization.” Journal of Power Sources 438 (October): 227018. https://doi.org/10.1016/j.jpowsour.2019.227018.
Vetter, Roman, and Jürgen O. Schumacher. “Experimental Parameter Uncertainty in Proton Exchange Membrane Fuel Cell Modeling - Part I : Scatter in Material Parameterization.” Journal of Power Sources, vol. 438, Oct. 2019, p. 227018, https://doi.org/10.1016/j.jpowsour.2019.227018.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.