Publikationstyp: Konferenz: Paper
Art der Begutachtung: Peer review (Publikation)
Titel: PoMeS : profit-maximizing sensor selection for crowd-sensed spectrum discovery
Autor/-in: Bayhan, Suzan
Gür, Gürkan
Zubow, Anatolij
et. al: No
DOI: 10.1007/978-3-030-25748-4_1
Tagungsband: Cognitive Radio-Oriented Wireless Networks
Seiten: 3
Seiten bis: 16
Angaben zur Konferenz: 14th International Conference on Cognitive Radio Oriented Wireless Networks, Poznan, Poland, 11-12 June 2019
Erscheinungsdatum: Aug-2019
Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)
Reihenzählung: 291
Verlag / Hrsg. Institution: Springer
Verlag / Hrsg. Institution: Cham
ISBN: 978-3-030-25747-7
Sprache: Englisch
Fachgebiet (DDC): 004: Informatik
Zusammenfassung: In contrast to conventional network planning where a mobile network operator (MNO) has to overprovision its network resources according to its peak load, an MNO can alternatively expand its capacity whenever, wherever needed with secondary spectrum discovered via spectrum sensing. While outsourcing the spectrum discovery to a crowd of sensing units may be more advantageous compared to deploying sensing infrastructure itself, the MNO has to offer incentives in the form of payments to the units participating in the sensing campaign. A key challenge for this crowdsensing environment is to decide on how many sensing units to employ given a certain budget under some performance constraints. In this paper, we present a profit-maximizing sensor selection scheme for crowdsensed spectrum discovery (PoMeS) for MNOs who want to take sensing as a service from the crowd of network elements and pay these sensors for their service. Compared to sensor selection considering the strict sensing accuracy required by the regulations, our simulations show that an MNO can increase its profit by deciding itself the level of sensing accuracy based on its traffic in each cell site as well as the penalty it has to pay for not satisfying the required sensing accuracy.
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institut für Angewandte Informationstechnologie (InIT)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.