Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-17089
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVetter, Roman-
dc.contributor.authorSchumacher, Jürgen O.-
dc.date.accessioned2019-05-10T09:39:36Z-
dc.date.available2019-05-10T09:39:36Z-
dc.date.issued2019-11-01-
dc.identifier.issn0378-7753de_CH
dc.identifier.issn1873-2755de_CH
dc.identifier.otherarXiv:1811.10093de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/17089-
dc.description.abstractNumerical modeling of proton exchange membrane fuel cells is at the verge of becoming predictive. A crucial requisite for this, though, is that material properties of the membrane-electrode assembly and their functional dependence on the conditions of operation are known with high precision. In this bipartite paper series we determine the most critical transport parameters for which accurate experimental characterization is required in order to enable the simulation of fuel cell operation with sufficient confidence from small to large current densities. In Part II, we employ the two-phase model developed in Part I to carry out extensive forward uncertainty propagation analyses. These include the study of local parameter sensitivity in the vicinity of a baseline parameter set, and a global sensitivity analysis in which a broad range of operating conditions and material properties is covered. A comprehensive ranking list of model parameters is presented, sorted by impact on predicted fuel cell properties such as the current-voltage characteristics and water balance. The top five in this list are, in this order: The membrane hydration isotherm, the electro-osmotic drag coefficient, the membrane thickness, the water diffusivity in the ionomer and its ionic conductivity.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofJournal of Power Sourcesde_CH
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/de_CH
dc.subjectphysics.app-phde_CH
dc.subject.ddc621.3: Elektrotechnik und Elektronikde_CH
dc.titleExperimental parameter uncertainty in proton exchange membrane fuel cell modeling - part II : sensitivity analysis and importance rankingde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1016/j.jpowsour.2019.04.057de_CH
dc.identifier.doi10.21256/zhaw-17089-
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start126529de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume439de_CH
zhaw.embargo.end2021-05-03de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snfPEM-NFP70de_CH
zhaw.webfeedErneuerbare Energiende_CH
zhaw.funding.zhawSCCER-Mobilityde_CH
Appears in Collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2019_Vetter_Experimental-parameter-uncertainty-part-II.pdf
  Until 2021-05-03
accepted Version2.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.