Full metadata record
DC FieldValueLanguage
dc.contributor.authorHocker, Thomas-
dc.contributor.authorNiffenegger, M.-
dc.contributor.authorSafa, Yasser-
dc.contributor.authorChahine, E.-
dc.date.accessioned2017-12-04T14:12:24Z-
dc.date.available2017-12-04T14:12:24Z-
dc.date.issued2011-
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1672-
dc.description.abstractBuckling of an elastic plate subjected to plane stress compression is modeled in the light of the principle of minimum potential energy and by applying the Rayleigh-Ritz method. Double Fourier series are used to provide displacement field parameterizations involving trigonometric functions. An energy minimization procedure is applied to calculate the unknown coefficients to describe the buckling shape and amplitude. Critical buckling values representing the thresholds for instability transitions in the system are estimated from the eigenvalues of the Hessian of the potential energy. On another hand, cracks could be sometimes initiated due to buckling. This occurs, for example, at the clamped boundaries of a plate where delamination is expected as a result of post-buckling stress. Or also, due to imperfections in a material, a buckling-driven crack can also be initiated in the middle of the surface. Therefore, we perform crack growth simulation using the eXtended (or enriched) Finite Element Method (XFEM). This approach allows one to represent accurately the stress singularity at the crack tip and the discontinuity on crack faces and avoid the remeshing along the internal boundary of the crack. Within the framework of XFEM, the concept of the partition of unity is employed to incorporate special local enrichment functions into the basis of the standard FEM to take into account the presence of the aforementioned singularity and discontinuity. In this work Rayleigh Ritz Method is implemented in Mathematica 8.0 where XFEM method is already existing in the open source GETFEM package.de_CH
dc.language.isoende_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectCoatingde_CH
dc.subjectDelaminationde_CH
dc.subjectBucklingde_CH
dc.subjectXFEMde_CH
dc.subject.ddc530: Physikde_CH
dc.titleBuckling-driven crack growth in elastic plate devicesde_CH
dc.typeKonferenz: Sonstigesde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
zhaw.conference.details21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.publication.reviewNot specifiedde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Hocker, T., Niffenegger, M., Safa, Y., & Chahine, E. (2011). Buckling-driven crack growth in elastic plate devices. 21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011.
Hocker, T. et al. (2011) ‘Buckling-driven crack growth in elastic plate devices’, in 21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011.
T. Hocker, M. Niffenegger, Y. Safa, and E. Chahine, “Buckling-driven crack growth in elastic plate devices,” in 21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011, 2011.
HOCKER, Thomas, M. NIFFENEGGER, Yasser SAFA und E. CHAHINE, 2011. Buckling-driven crack growth in elastic plate devices. In: 21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011. Conference presentation. 2011
Hocker, Thomas, M. Niffenegger, Yasser Safa, and E. Chahine. 2011. “Buckling-Driven Crack Growth in Elastic Plate Devices.” Conference presentation. In 21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011.
Hocker, Thomas, et al. “Buckling-Driven Crack Growth in Elastic Plate Devices.” 21. Symposium Simulationstechnik (ASIM 2011), Winterthur, Schweiz, 7.–9. September 2011, 2011.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.