Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation
Autor/-in: Linder, Markus
Hocker, Thomas
Holzer, Lorenz
Friedrich, K. Andreas
Iwanschitz, Boris
Mai, Andreas
Schuler, J. Andreas
DOI: 10.1016/j.jpowsour.2013.05.200
Erschienen in: Journal of Power Sources
Band(Heft): 243
Seite(n): 508
Seiten bis: 518
Erscheinungsdatum: 1-Dez-2013
Verlag / Hrsg. Institution: Elsevier
ISSN: 0378-7753
1873-2755
Sprache: Englisch
Schlagwörter: Chromium oxide; Scale growth rate law; Interconnect; SOFC
Fachgebiet (DDC): 530: Physik
621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: The ohmic resistance caused by Cr2O3 scale formation on metallic interconnects (MICs) can significantly contribute to the overall degradation of SOFC stacks. For this reason oxide scale growth on Cr5Fe1Y2O3 (CFY) and Fe22Cr0.5Mn (Crofer) was investigated by scanning electron microscopy (SEM) from post-test samples that were either exposed to air at 850°C (furnace) or operated in Hexis planar SOFC-stacks under dual atmospheres (anode and cathode conditions) at temperatures around 900°C. The study includes unique test results from a stack operated for 40,000 h. To analyze inhomogeneity in scale thicknesses a dedicated statistical image analysis method has been applied. SEM images were used to compare the structural phenomena related to MIC oxidation at different sample locations. The observed differences between different sample locations may relate to locally different conditions (temperature, pO2, H2O/O2-ratio). Cr2O3 scale growth on the anode side is found to be approximately twice as fast in comparison to the scale growth on cathode side. Finally, based on our time lapse analyses with extensive sampling it can be concluded that reliable predictions of scale growth requires statistical analyses over a period that covers at least a quarter (10,000 h) of the required SOFC stack lifetime (40,000 h).
URI: https://digitalcollection.zhaw.ch/handle/11475/1648
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Linder, M., Hocker, T., Holzer, L., Friedrich, K. A., Iwanschitz, B., Mai, A., & Schuler, J. A. (2013). Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation. Journal of Power Sources, 243, 508–518. https://doi.org/10.1016/j.jpowsour.2013.05.200
Linder, M. et al. (2013) ‘Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation’, Journal of Power Sources, 243, pp. 508–518. Available at: https://doi.org/10.1016/j.jpowsour.2013.05.200.
M. Linder et al., “Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation,” Journal of Power Sources, vol. 243, pp. 508–518, Dec. 2013, doi: 10.1016/j.jpowsour.2013.05.200.
LINDER, Markus, Thomas HOCKER, Lorenz HOLZER, K. Andreas FRIEDRICH, Boris IWANSCHITZ, Andreas MAI und J. Andreas SCHULER, 2013. Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation. Journal of Power Sources. 1 Dezember 2013. Bd. 243, S. 508–518. DOI 10.1016/j.jpowsour.2013.05.200
Linder, Markus, Thomas Hocker, Lorenz Holzer, K. Andreas Friedrich, Boris Iwanschitz, Andreas Mai, and J. Andreas Schuler. 2013. “Cr2O3 Scale Growth Rates on Metallic Interconnectors Derived from 40,000 H Solid Oxide Fuel Cell Stack Operation.” Journal of Power Sources 243 (December): 508–18. https://doi.org/10.1016/j.jpowsour.2013.05.200.
Linder, Markus, et al. “Cr2O3 Scale Growth Rates on Metallic Interconnectors Derived from 40,000 H Solid Oxide Fuel Cell Stack Operation.” Journal of Power Sources, vol. 243, Dec. 2013, pp. 508–18, https://doi.org/10.1016/j.jpowsour.2013.05.200.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.