Title: Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks : constitutive materials of anode-supported cells
Authors : Nakajo, Arata
Kuebler, Jakob
Faes, Antonin
Vogt, Ulrich F.
Schindler, Hans Jürgen
Chiang, Lieh-Kwang
Modena, Stefano
Van herle, Jan
Hocker, Thomas
Published in : Ceramics International
Volume(Issue) : 38
Issue : 5
Pages : 3907
Pages to: 3927
Publisher / Ed. Institution : Pergamon Press
Issue Date: 5-Jul-2012
Language : Englisch / English
Subjects : Failure; Creep; Mechanics; SOFC
Subject (DDC) : 530: Physik
621.3: Elektrotechnik, Elektronik
Abstract: The mechanical failure of one cell is sufficient to lead to the end of service of a solid oxide fuel cell (SOFC) stack. Therefore, there is growing interest in gaining knowledge on the mechanical properties of the cell materials for stress analysis. This study compiles available data from the literature on the mechanical properties of the most common materials used in intermediate-temperature anode-supported cells: nickel and yttria-stabilized zirconia (Ni–YSZ) anodes, YSZ electrolytes, yttria (YDC) or gadolinia-doped ceria (GDC) compatibility layers and lanthanum strontium manganite (LSM) or lanthanum strontium cobalt ferrite (LSCF) cathodes. The properties for the simulation of stresses, i.e. coefficient of thermal expansion (CTE), Young's modulus, Poisson's ratio, creep behaviour and strength are reported, with an emphasis on temperature and porosity dependence and the evolution upon aging or cycling when available. Measurements of our Ni(O)–YSZ anode material includes the CTE (oxidised and reduced state), Young's modulus and strength at room temperature (oxidised and reduced) and 1073 K (oxidised).
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Publication type: Beitrag in wissenschaftlicher Zeitschrift / Article in scientific Journal
DOI : 10.1016/j.ceramint.2012.01.043
ISSN: 0272-8842
URI: https://digitalcollection.zhaw.ch/handle/11475/1643
Appears in Collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.