Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-1476
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPecho, Omar M.-
dc.contributor.authorStenzel, Ole-
dc.contributor.authorIwanschitz, Boris-
dc.contributor.authorGasser, Philippe-
dc.contributor.authorNeumann, Matthias-
dc.contributor.authorSchmidt, Volker-
dc.contributor.authorPrestat, Michel-
dc.contributor.authorHocker, Thomas-
dc.contributor.authorFlatt, Robert J.-
dc.contributor.authorHolzer, Lorenz-
dc.date.accessioned2017-11-30T14:48:08Z-
dc.date.available2017-11-30T14:48:08Z-
dc.date.issued2015-08-26-
dc.identifier.issn1996-1944de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/1629-
dc.description.abstractThis study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 ºC. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 x M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = ε β^0.36/τ^5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofMaterialsde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectElectrodede_CH
dc.subjectFuel cellde_CH
dc.subjectMapde_CH
dc.subjectMicrostructurede_CH
dc.subject.ddc540: Chemiede_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.title3D microstructure effects in Ni-YSZ anodes : prediction of effective transport properties and optimization of redox stabilityde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.3390/ma8095265de_CH
dc.identifier.doi10.21256/zhaw-1476-
zhaw.funding.euNode_CH
zhaw.issue9de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end5585de_CH
zhaw.pages.start5554de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume8de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2015_pecho_3D microstructure effects in Ni-YSZ anodes.pdf8.93 MBAdobe PDFThumbnail
View/Open
Show simple item record
Pecho, O. M., Stenzel, O., Iwanschitz, B., Gasser, P., Neumann, M., Schmidt, V., Prestat, M., Hocker, T., Flatt, R. J., & Holzer, L. (2015). 3D microstructure effects in Ni-YSZ anodes : prediction of effective transport properties and optimization of redox stability. Materials, 8(9), 5554–5585. https://doi.org/10.3390/ma8095265
Pecho, O.M. et al. (2015) ‘3D microstructure effects in Ni-YSZ anodes : prediction of effective transport properties and optimization of redox stability’, Materials, 8(9), pp. 5554–5585. Available at: https://doi.org/10.3390/ma8095265.
O. M. Pecho et al., “3D microstructure effects in Ni-YSZ anodes : prediction of effective transport properties and optimization of redox stability,” Materials, vol. 8, no. 9, pp. 5554–5585, Aug. 2015, doi: 10.3390/ma8095265.
PECHO, Omar M., Ole STENZEL, Boris IWANSCHITZ, Philippe GASSER, Matthias NEUMANN, Volker SCHMIDT, Michel PRESTAT, Thomas HOCKER, Robert J. FLATT und Lorenz HOLZER, 2015. 3D microstructure effects in Ni-YSZ anodes : prediction of effective transport properties and optimization of redox stability. Materials. 26 August 2015. Bd. 8, Nr. 9, S. 5554–5585. DOI 10.3390/ma8095265
Pecho, Omar M., Ole Stenzel, Boris Iwanschitz, Philippe Gasser, Matthias Neumann, Volker Schmidt, Michel Prestat, Thomas Hocker, Robert J. Flatt, and Lorenz Holzer. 2015. “3D Microstructure Effects in Ni-YSZ Anodes : Prediction of Effective Transport Properties and Optimization of Redox Stability.” Materials 8 (9): 5554–85. https://doi.org/10.3390/ma8095265.
Pecho, Omar M., et al. “3D Microstructure Effects in Ni-YSZ Anodes : Prediction of Effective Transport Properties and Optimization of Redox Stability.” Materials, vol. 8, no. 9, Aug. 2015, pp. 5554–85, https://doi.org/10.3390/ma8095265.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.