Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-2792
Titel: A multicomponent diffusion model for organic redox flow battery membranes
Autor/-in: Mourouga, Gaël
Sansone, Caterina
Alloin, Fannie
Iojoiu, Cristina
Schumacher, Jürgen
Erschienen in: 16th symposium on modeling and experimental validation of electrochemical energy technologies (ModVal 2019) : book of abstracts
Angaben zur Konferenz: ModVal 2019, Braunschweig, Germany, 12 - 13 March 2019
Herausgeber/-in des übergeordneten Werkes: Krewer, Ulrike
Laue, Vincent
Redeker, Andreas
Verlag / Hrsg. Institution: Technische Universität Braunschweig
Erscheinungsdatum: 2019
Lizenz (gemäss Verlagsvertrag): Keine Angabe
Art der Begutachtung: Editorial review
Sprache: Englisch
Schlagwörter: Organic redox flow batteries; Membrane modeling and simulation
Fachgebiet (DDC): 621.3: Elektrotechnik und Elektronik
Zusammenfassung: The all-quinone organic redox flow battery shows promise as a low-cost, sustainable energy storage device. As most flow batteries, membranes play a critical role in the performance and cycling stability of the device. In this work, we aim to characterize the transport processes in cation exchange membranes via multicomponent diffusion theory [1] in order to predict crossover rates, and estimate trade-offs between performance and stability. Characterization experiments on the membranes (namely: conductivity, proton transport number, electro-osmotic coefficient and permeability coefficient for quinones) allow to establish a multicomponent diffusion system of equations, solved using MATLAB. The model is validated with crossover fluxs measurements under varying conditions. The influence of thickness, water content and conductivity is assessed, for different commercial membranes (Nafion® and Fumasep). Their impact on cell performance is estimated through an in-house 1D electro-chemical model of the cells developed using COMSOL Multiphysics. This model accounts for the kinetics of the redox reactions happening at the electrode/electrolyte interface (taking in account mass and charge transports), in a flow-through graphite felt electrode with 0.2M anthraquinone (negative side) and 0.2M benzoquinone (positive side) dissolved in sulfuric acid [2]. The model is validated using cell testing equipment provided by JenaBatteries under the scope of the FlowCamp project.
Weitere Angaben: Acknowledgements: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement no. 765289. Project website: www.flowcamp-project.eu
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Publikationstyp: Konferenz: Poster
DOI: 10.21256/zhaw-2792
URI: https://digitalcollection.zhaw.ch/handle/11475/16162
Publiziert im Rahmen des ZHAW-Projekts: Redox Flow Battery Campus
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Mourouga_ModVal.pdf3.22 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.