Full metadata record
DC FieldValueLanguage
dc.contributor.authorFluhr, Daniel-
dc.contributor.authorZüfle, Simon-
dc.contributor.authorMuhsin, Burhan-
dc.contributor.authorÖttking, Rolf-
dc.contributor.authorSeeland, Marco-
dc.contributor.authorRoesch, Roland-
dc.contributor.authorSchubert, Ulrich S.-
dc.contributor.authorRuhstaller, Beat-
dc.contributor.authorKrischok, Stefan-
dc.contributor.authorHoppe, Harald-
dc.date.accessioned2019-03-01T13:01:04Z-
dc.date.available2019-03-01T13:01:04Z-
dc.date.issued2018-
dc.identifier.issn1862-6300de_CH
dc.identifier.issn1862-6319de_CH
dc.identifier.issn0031-8965de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/15723-
dc.descriptionArticle 1800474de_CH
dc.description.abstractAppreciable progress has been achieved in the development of organic photovoltaics (OPV) over the last decade. However, further improvement of operational stability remains a challenge. In this contribution, focus is placed on corrosion and delamination of the metal contact, which are mainly caused by oxygen or water vapor ingress but in other cases also via mechanical wear and different thermal expansion coefficients. So‐called pinholes and electrode edges provide pathways for ingress of water vapor and oxygen, which may attack the metal–organic interface. Thus, electrical insolation via formation of insulating metal oxide and concomitant mechanical delamination occurs. As charge injection and extraction is suppressed at insulated and delaminated areas, the active area contributing to power conversion gets reduced. This work links analytical and numerical predictions about the active area in contact with the electrode to experimentally observe dependencies. Spatially and time‐resolved electroluminescence measurements provide information on location, size, and growth‐rate of insulated areas. Area loss rates for dark spots depend either sub‐linear (for early stages and edge‐ingress) or linear (later stages) on time. The initial defect size has a clear impact on growth rates. Furthermore, it has possible to demonstrate titanium oxide interlayers to slow down this type of extrinsic degradation.de_CH
dc.language.isodede_CH
dc.publisherWileyde_CH
dc.relation.ispartofPhysica status solidi Ade_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleAluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layersde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1002/pssa.201800474de_CH
zhaw.funding.euNode_CH
zhaw.issue23de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume215de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Fluhr, D., Züfle, S., Muhsin, B., Öttking, R., Seeland, M., Roesch, R., Schubert, U. S., Ruhstaller, B., Krischok, S., & Hoppe, H. (2018). Aluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layers. Physica status solidi A, 215(23). https://doi.org/10.1002/pssa.201800474
Fluhr, D. et al. (2018) ‘Aluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layers’, Physica status solidi A, 215(23). Available at: https://doi.org/10.1002/pssa.201800474.
D. Fluhr et al., “Aluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layers,” Physica status solidi A, vol. 215, no. 23, 2018, doi: 10.1002/pssa.201800474.
FLUHR, Daniel, Simon ZÜFLE, Burhan MUHSIN, Rolf ÖTTKING, Marco SEELAND, Roland ROESCH, Ulrich S. SCHUBERT, Beat RUHSTALLER, Stefan KRISCHOK und Harald HOPPE, 2018. Aluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layers. Physica status solidi A. 2018. Bd. 215, Nr. 23. DOI 10.1002/pssa.201800474
Fluhr, Daniel, Simon Züfle, Burhan Muhsin, Rolf Öttking, Marco Seeland, Roland Roesch, Ulrich S. Schubert, Beat Ruhstaller, Stefan Krischok, and Harald Hoppe. 2018. “Aluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layers.” Physica status solidi A 215 (23). https://doi.org/10.1002/pssa.201800474.
Fluhr, Daniel, et al. “Aluminum electrode insulation dynamics via interface oxidation by reactant diffusion in organic layers.” Physica status solidi A, vol. 215, no. 23, 2018, https://doi.org/10.1002/pssa.201800474.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.