Publikationstyp: Konferenz: Sonstiges
Art der Begutachtung: Peer review (Abstract)
Titel: Eliminating anomalies of CFD model results of the powder coating process by refining aerodynamic flow-particle interaction and by introducing a dynamic particle charging model
Autor/-in: Boiger, Gernot Kurt
DOI: 10.4172/2168-9873-C1-017
Erschienen in: Journal of Applied Mechanical Engineering
Tagungsband: Scientific tracks & abstracts : day 1
Band(Heft): 2018
Heft: 7
Angaben zur Konferenz: 3rd International Conference on Fluid Dynamics & Aerodynamics, Berlin, Germany, 25-26 October 2018
Erscheinungsdatum: Okt-2018
Verlag / Hrsg. Institution: conferenceseries.com
Verlag / Hrsg. Institution: London
ISSN: 2168-9873
Sprache: Englisch
Schlagwörter: Powder coating; OpenFoam; Simulation; CFD; RAS; Algorithm
Fachgebiet (DDC): 530: Physik
Zusammenfassung: A computational fluid dynamic model of the powder coating process has been developed using OpenFoam®. It considers particle-dynamic-, aerodynamic-, electro-static- and gravitational effects. While being fully functional, the Eulerian-LaGrangian model has in some cases shown anomalies, yielding coating predictions, which were not observed in comparable experiments. In order to analyse and amend the problem, the underlying Reynolds Average Stress (RAS) turbulence modelling approach was (i) re-evaluated, compared to (ii) Direct Numerical Simulation (DNS) and (iii) Large Eddie Simulation (LES) flow modelling methods, (iv) improved to account for turbulence impact on flow-particle interaction and (v) extended by a dynamic particle charging algorithm. The effects of the said model improvements were investigated and model-results were compared to measurements of experimentally obtained coating thickness values. It can be shown that the modified simulation model yields a much higher level of correspondence to experiments than previous versions.
URI: https://digitalcollection.zhaw.ch/handle/11475/14445
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Boiger, G. K. (2018). Eliminating anomalies of CFD model results of the powder coating process by refining aerodynamic flow-particle interaction and by introducing a dynamic particle charging model [Conference presentation]. Journal of Applied Mechanical Engineering, 2018(7). https://doi.org/10.4172/2168-9873-C1-017
Boiger, G.K. (2018) ‘Eliminating anomalies of CFD model results of the powder coating process by refining aerodynamic flow-particle interaction and by introducing a dynamic particle charging model’, in Journal of Applied Mechanical Engineering. London: conferenceseries.com. Available at: https://doi.org/10.4172/2168-9873-C1-017.
G. K. Boiger, “Eliminating anomalies of CFD model results of the powder coating process by refining aerodynamic flow-particle interaction and by introducing a dynamic particle charging model,” in Journal of Applied Mechanical Engineering, Oct. 2018, vol. 2018, no. 7. doi: 10.4172/2168-9873-C1-017.
BOIGER, Gernot Kurt, 2018. Eliminating anomalies of CFD model results of the powder coating process by refining aerodynamic flow-particle interaction and by introducing a dynamic particle charging model. In: Journal of Applied Mechanical Engineering. Conference presentation. London: conferenceseries.com. Oktober 2018
Boiger, Gernot Kurt. 2018. “Eliminating Anomalies of CFD Model Results of the Powder Coating Process by Refining Aerodynamic Flow-Particle Interaction and by Introducing a Dynamic Particle Charging Model.” Conference presentation. In Journal of Applied Mechanical Engineering. Vol. 2018. London: conferenceseries.com. https://doi.org/10.4172/2168-9873-C1-017.
Boiger, Gernot Kurt. “Eliminating Anomalies of CFD Model Results of the Powder Coating Process by Refining Aerodynamic Flow-Particle Interaction and by Introducing a Dynamic Particle Charging Model.” Journal of Applied Mechanical Engineering, vol. 2018, no. 7, conferenceseries.com, 2018, https://doi.org/10.4172/2168-9873-C1-017.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.