Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-4910
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRighi, Marcello-
dc.date.accessioned2018-11-30T09:53:55Z-
dc.date.available2018-11-30T09:53:55Z-
dc.date.issued2013-06-
dc.identifier.issn0001-9240de_CH
dc.identifier.issn2059-6464de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/13402-
dc.descriptionerworben im Rahmen der Schweizer Nationallizenzen (www.nationallizenzen.ch)de_CH
dc.description.abstractGas-kinetic theory is also valid in the continuum regime: the Euler and Navier-Stokes equations can be obtained as projection of the Boltzmann equation on to the physical space (x,t). The numerical schemes derived from gas-kinetic theory are computationally more expensive than Navier-Stokes based ones, but offer advantages which have been attracting a growing level of attention: they can (i) accommodate discontinuities at cells interface, (ii) provide high-resolution fluxes, (iii) provide advantages in the simulation of turbulence, (iv) handle hypersonic and/or rarefied flows. This study extends the validation of gas-kinetic schemes investigating a few turbulent flow cases. At a slightly higher computational cost, gas-kinetic schemes provide results comparable to those obtained with well-validated Navier-Stokes schemes using the same turbulence model, grid and reconstruction order. In the case of shock-separated flows, the results obtained with the gas-kinetic scheme are even closer to experimental data. These findings are consistent with the idea that gas-kinetic theory is a physically more consistent framework for investigating the mechanics of fluids.de_CH
dc.language.isoende_CH
dc.publisherCambridge University Pressde_CH
dc.relation.ispartofThe Aeronautical Journalde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectTurbulence modellingde_CH
dc.subjectGas-kinetic schemede_CH
dc.subjectCompressible flowde_CH
dc.subject.ddc530: Physikde_CH
dc.titleA finite-volume gas-kinetic method for the solution of the Navier-Stokes equationsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
dc.identifier.doi10.21256/zhaw-4910-
dc.identifier.doi10.1017/S000192400000823Xde_CH
zhaw.funding.euNode_CH
zhaw.issue1191de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end616de_CH
zhaw.pages.start605de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume117de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Righi, M. (2013). A finite-volume gas-kinetic method for the solution of the Navier-Stokes equations. The Aeronautical Journal, 117(1191), 605–616. https://doi.org/10.21256/zhaw-4910
Righi, M. (2013) ‘A finite-volume gas-kinetic method for the solution of the Navier-Stokes equations’, The Aeronautical Journal, 117(1191), pp. 605–616. Available at: https://doi.org/10.21256/zhaw-4910.
M. Righi, “A finite-volume gas-kinetic method for the solution of the Navier-Stokes equations,” The Aeronautical Journal, vol. 117, no. 1191, pp. 605–616, Jun. 2013, doi: 10.21256/zhaw-4910.
RIGHI, Marcello, 2013. A finite-volume gas-kinetic method for the solution of the Navier-Stokes equations. The Aeronautical Journal. Juni 2013. Bd. 117, Nr. 1191, S. 605–616. DOI 10.21256/zhaw-4910
Righi, Marcello. 2013. “A Finite-Volume Gas-Kinetic Method for the Solution of the Navier-Stokes Equations.” The Aeronautical Journal 117 (1191): 605–16. https://doi.org/10.21256/zhaw-4910.
Righi, Marcello. “A Finite-Volume Gas-Kinetic Method for the Solution of the Navier-Stokes Equations.” The Aeronautical Journal, vol. 117, no. 1191, June 2013, pp. 605–16, https://doi.org/10.21256/zhaw-4910.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.