Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-4909
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuchs, Hans Ulrich-
dc.date.accessioned2018-11-30T09:52:39Z-
dc.date.available2018-11-30T09:52:39Z-
dc.date.issued2014-
dc.identifier.issn2329-8774de_CH
dc.identifier.issn2329-8766de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/13401-
dc.descriptionerworben im Rahmen der Schweizer Nationallizenzen (www.nationallizenzen.ch)de_CH
dc.description.abstractIf we accept temperature and entropy as primitive quantities, we can construct a direct approach to a dynamical thermal theory of spatially continuous and uniform processes. The theory of uniform models serves as a simple entry point for learners of modern thermodynamics. Such models can be applied fruitfully to an understanding of (the dynamics of) thermoelectric processes and devices. Entropy, temperature, charge, and voltage allow us to describe the role of energy concisely, and constitutive quantities can be given their natural entropic interpretation. In this paper, aggregate dynamical models of a Peltier device will be created and simulations will be compared to non-steady-state experimental data. Such overall models give us a simple image of the transport of charge and transport, production, and storage of entropy and can be easily extended to the spatially continuous case. Process diagrams for a uniform model can be used to visualize these processes and the role of energy. Device efficiency can be easily read from the model. Apart from external parameters such as load resistances or temperature differences, it depends upon three parameters of the device: internal electric resistance, entropy conductance, and Seebeck coefficient. The Second Law efficiency of a generator suggests how to define the figure of merit (zT) of the thermoelectric material. Distinction between ideal and dissipative processes and the rates at which energy is made available or used allows us to construct a simple argument for the equality of the Seebeck and Peltier coefficients.de_CH
dc.language.isoende_CH
dc.publisherDe Gruyterde_CH
dc.relation.ispartofEnergy Harvesting and Systemsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc530: Physikde_CH
dc.titleA direct entropic approach to uniform and spatially continuous dynamical models of thermoelectric devicesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Angewandte Mathematik und Physik (IAMP)de_CH
dc.identifier.doi10.21256/zhaw-4909-
dc.identifier.doi10.1515/ehs-2014-0011de_CH
zhaw.funding.euNode_CH
zhaw.issue3-4de_CH
zhaw.originated.zhawNode_CH
zhaw.pages.end265de_CH
zhaw.pages.start253de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume1de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.