Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Observing chemical reactions by time-resolved high-resolution neutron imaging
Authors: Terreni, Jasmin
Trottmann, Matthias
Delmelle, Renaud
Heel, Andre
Trtik, Pavel
Lehmann, Eberhard H.
Borgschulte, Andreas
DOI: 10.1021/acs.jpcc.8b07321
Published in: The Journal of Physical Chemistry C
Volume(Issue): 122
Issue: 41
Page(s): 23574
Pages to: 23581
Issue Date: 21-Sep-2018
Publisher / Ed. Institution: American Chemical Society
ISSN: 1932-7447
Language: German
Subjects: CO2 methanation; Sorption enhanced; Neutron imaging
Subject (DDC): 540: Chemistry
Abstract: We developed an operando technique based on time-resolved high-resolution neutron imaging to map the water concentration distribution inside millimeter-sized catalyst beads catalyzing the sorption-enhanced CO2 methanation reaction. By combining the spatially resolved results from neutron microscopy with the space-integrated reaction kinetics by gas analysis, we are able to study the reaction kinetics including production rates of molecules and mass transport on the mesoscale. We find that the diffusion of water through catalysts is a critical reaction constraint for the sorption-enhanced methanation reaction. We derive the Thiele parameter of a technical catalyst as a quantitative measure, supporting the materials and reactor design of sorption-enhanced methanation. From this, we conclude that nanostructuring sorption catalysts to shorten the diffusion pathway is advantageous over physical mixtures of macroscopic sorbents and catalysts, resulting in long diffusion path lengths. Water accumulation inducing a neutron contrast is specific to a few sorption-enhanced reactions. To extend the applicability of the method to other catalytic systems without sorption enhancement, we introduce a combination of neutron microscopy with steady-state isotopic transient kinetic analysis: hydrogen−deuterium exchange as a measure of the catalytic activity can be followed by neutron imaging.
Fulltext version: Published version
License (according to publishing contract): Licence according to publishing contract
Departement: School of Engineering
Organisational Unit: Institute of Materials and Process Engineering (IMPE)
Published as part of the ZHAW project: SMARTCAT - Entwicklung eines „Smart-Konzepts“ für ein Biogas-Upgrade durch kontinuierliche CO2 Methanisierung
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.