Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part I : effect of compression and anisotropy of dry GDL
Autor/-in: Holzer, Lorenz
Pecho, Omar
Schumacher, Jürgen
Marmet, Philip
Stenzel, Ole
Büchi, F.N.
Lamibrac, A.
Münch, B.
DOI: 10.1016/j.electacta.2017.01.030
Erschienen in: Electrochimica Acta
Band(Heft): 227
Seite(n): 419
Seiten bis: 434
Erscheinungsdatum: 10-Feb-2017
Verlag / Hrsg. Institution: Elsevier
ISSN: 0013-4686
1873-3859
Sprache: Englisch
Schlagwörter: Map
Fachgebiet (DDC): 
Zusammenfassung: New quantitative relationships are established between effective properties (gas diffusivity, permeability and electrical conductivity) for a dry GDL (25 BA) from SGL Carbon with the corresponding microstructure characteristics from 3D analysis. These microstructure characteristics include phase volume fractions, geodesic tortuosity, constrictivity and hydraulic radius. The latter two parameters include information from two different size distribution curves for bulges (continuous PSD) and for bottlenecks (MIP-PSD). X-ray tomographic microscopy is performed for GDL at different compression levels and the micro-macro-relationships are then established for the in-plane and through-plane directions. The predicted properties based on these relationships are compared with numerical transport simulations, which give very similar results and which can be summarized as follows: Gas diffusivity is higher in the in-plane than in the through-plane direction. Its variation with compression is mainly related to changes of porosity and geodesic tortuosity. Permeability is dominated by variations in hydraulic radius. Through-plane permeability is slightly higher than in-plane. Anisotropy of electrical conductivity is controlled by tortuosity, which is higher for the through-plane direction. A table with new quantitative relationships is provided, which are considered to be more accurate and precise than older descriptions (e.g. Carman-Kozeny, Bruggeman), because they are based on detailed topological information from 3D analysis. Furthermore, when using these relationships as input for macro-homogenous modeling, this enables to simulate microstructure effects of real GDL (SGL 25 BA) more accurately. In future, the same methodology can be used to study micro-macro relationships in wet GDL and to predict relative liquid permeability and relative gas diffusivity.
URI: https://digitalcollection.zhaw.ch/handle/11475/11768
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.