Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltermatt, Pietro-
dc.contributor.authorSchumacher, Jürgen-
dc.contributor.authorCuevas, Andres-
dc.contributor.authorKerr, Mark-
dc.contributor.authorGlunz, Stefan-
dc.contributor.authorKing, Richard-
dc.contributor.authorHeiser, Gernot-
dc.contributor.authorSchenk, Andreas-
dc.date.accessioned2018-10-10T11:49:14Z-
dc.date.available2018-10-10T11:49:14Z-
dc.date.issued2002-08-27-
dc.identifier.issn0021-8979de_CH
dc.identifier.issn1089-7550de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/11595-
dc.description.abstractWe have established a simulation model for phosphorus-doped silicon emitters using Fermi–Dirac statistics. Our model is based on a set of independently measured material parameters and on quantum mechanical calculations. In contrast to commonly applied models, which use Boltzmann statistics and apparent band-gap narrowing data, we use Fermi–Dirac statistics and theoretically derived band shifts, and therefore we account for the degeneracy effects on a physically sounder basis. This leads to unprecedented consistency and precision even at very high dopant densities. We also derive the hole surface recombination velocity parameter Spo by applying our model to a broad range of measurements of the emitter saturation current density. Despite small differences in oxide quality among various laboratories, Spo generally increases for all of them in a very similar manner at high surface doping densities Nsurf. Pyramidal texturing generally increases Spo by a factor of five. The frequently used forming gas anneal lowers Spo mainly in low-doped emitters, while an aluminum anneal (Al deposit followed by a heat cycle) lowers Spo at all Nsurf.de_CH
dc.language.isoende_CH
dc.publisherAmerican Institute of Physicsde_CH
dc.relation.ispartofJournal of Applied Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleNumerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parametersde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
dc.identifier.doi10.1063/1.1501743de_CH
zhaw.funding.euNode_CH
zhaw.issue6de_CH
zhaw.originated.zhawNode_CH
zhaw.pages.end3197de_CH
zhaw.pages.start3187de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume92de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Altermatt, P., Schumacher, J., Cuevas, A., Kerr, M., Glunz, S., King, R., Heiser, G., & Schenk, A. (2002). Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters. Journal of Applied Physics, 92(6), 3187–3197. https://doi.org/10.1063/1.1501743
Altermatt, P. et al. (2002) ‘Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters’, Journal of Applied Physics, 92(6), pp. 3187–3197. Available at: https://doi.org/10.1063/1.1501743.
P. Altermatt et al., “Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters,” Journal of Applied Physics, vol. 92, no. 6, pp. 3187–3197, Aug. 2002, doi: 10.1063/1.1501743.
ALTERMATT, Pietro, Jürgen SCHUMACHER, Andres CUEVAS, Mark KERR, Stefan GLUNZ, Richard KING, Gernot HEISER und Andreas SCHENK, 2002. Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters. Journal of Applied Physics. 27 August 2002. Bd. 92, Nr. 6, S. 3187–3197. DOI 10.1063/1.1501743
Altermatt, Pietro, Jürgen Schumacher, Andres Cuevas, Mark Kerr, Stefan Glunz, Richard King, Gernot Heiser, and Andreas Schenk. 2002. “Numerical Modeling of Highly Doped Si:P Emitters Based on Fermi–Dirac Statistics and Self-Consistent Material Parameters.” Journal of Applied Physics 92 (6): 3187–97. https://doi.org/10.1063/1.1501743.
Altermatt, Pietro, et al. “Numerical Modeling of Highly Doped Si:P Emitters Based on Fermi–Dirac Statistics and Self-Consistent Material Parameters.” Journal of Applied Physics, vol. 92, no. 6, Aug. 2002, pp. 3187–97, https://doi.org/10.1063/1.1501743.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.