Please use this identifier to cite or link to this item:
https://doi.org/10.21256/zhaw-11585
Publication type: | Article in scientific journal |
Type of review: | Peer review (publication) |
Title: | Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells |
Authors: | Dujc, Jaka Forner-Cuenca, Antoni Marmet, Philip Cochet, Magali Vetter, Roman Schumacher, Jürgen Boillat, Pierre |
DOI: | 10.1115/1.4038626 10.21256/zhaw-11585 |
Published in: | Journal of Electrochemical Energy Conversion and Storage |
Volume(Issue): | 15 |
Issue: | 2 |
Issue Date: | Jan-2018 |
Publisher / Ed. Institution: | The American Society of Mechanical Engineers |
ISSN: | 2381-6872 2381-6910 |
Language: | English |
Subjects: | Modeling; Water management; Patterned GDL; Proton exchange membrane fuel cells |
Subject (DDC): | 621.3: Electrical, communications, control engineering |
Abstract: | We present a macrohomogeneous two-phase model of a pro- ton exchange membrane fuel cell (PEFC). The model takes into account the mechanical compression of the gas diffusion layer (GDL), the two-phase flow of water, the transport of the gas species and the electrochemical reaction of the reactand gases. The model was used to simulate the behavior of a PEFC with a patterned GDL. The results of the reduced model, which considers only the mechanical compression and the two-phase flow, are compared to the experimental ex-situ imbibition data obtained by neutron radiography imaging. The results are in good agreement. Additionally, by using all the model features, a simulation of an operating fuel cell has been performed to study the intricate couplings in an operating fuel cell and to examine the patterned GDL effects. The model confirms that the patterned GDL design liberates the pre-defined domains from liquid water and thus locally increases the oxygen diffusivity. |
URI: | https://digitalcollection.zhaw.ch/handle/11475/11585 |
Fulltext version: | Submitted version |
License (according to publishing contract): | Licence according to publishing contract |
Departement: | School of Engineering |
Organisational Unit: | Institute of Computational Physics (ICP) |
Appears in collections: | Publikationen School of Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018_Dujc_etal_Modelling_effects_patterned_wettability_J_ElectrochemEnergyConversion_preprint.pdf | 17.97 MB | Adobe PDF | ![]() View/Open |
Show full item record
Dujc, J., Forner-Cuenca, A., Marmet, P., Cochet, M., Vetter, R., Schumacher, J., & Boillat, P. (2018). Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells. Journal of Electrochemical Energy Conversion and Storage, 15(2). https://doi.org/10.1115/1.4038626
Dujc, J. et al. (2018) ‘Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells’, Journal of Electrochemical Energy Conversion and Storage, 15(2). Available at: https://doi.org/10.1115/1.4038626.
J. Dujc et al., “Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells,” Journal of Electrochemical Energy Conversion and Storage, vol. 15, no. 2, Jan. 2018, doi: 10.1115/1.4038626.
DUJC, Jaka, Antoni FORNER-CUENCA, Philip MARMET, Magali COCHET, Roman VETTER, Jürgen SCHUMACHER und Pierre BOILLAT, 2018. Modelling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells. Journal of Electrochemical Energy Conversion and Storage. Januar 2018. Bd. 15, Nr. 2. DOI 10.1115/1.4038626
Dujc, Jaka, Antoni Forner-Cuenca, Philip Marmet, Magali Cochet, Roman Vetter, Jürgen Schumacher, and Pierre Boillat. 2018. “Modelling the Effects of Using Gas Diffusion Layers with Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells.” Journal of Electrochemical Energy Conversion and Storage 15 (2). https://doi.org/10.1115/1.4038626.
Dujc, Jaka, et al. “Modelling the Effects of Using Gas Diffusion Layers with Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells.” Journal of Electrochemical Energy Conversion and Storage, vol. 15, no. 2, Jan. 2018, https://doi.org/10.1115/1.4038626.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.