Full metadata record
DC FieldValueLanguage
dc.contributor.authorBollmann, Kurt-
dc.contributor.authorGraf, Roland Felix-
dc.contributor.authorSuter, Werner-
dc.date.accessioned2018-10-01T14:29:42Z-
dc.date.available2018-10-01T14:29:42Z-
dc.date.issued2011-
dc.identifier.issn1600-0587de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/11281-
dc.description.abstractA major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofEcographyde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc577: Ökologiede_CH
dc.subject.ddc590: Tiere (Zoologie)de_CH
dc.titleQuantitative predictions for patch occupancy of capercaillie in fragmented habitatsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Umwelt und Natürliche Ressourcen (IUNR)de_CH
dc.identifier.doi10.1111/j.1600-0587.2010.06314.xde_CH
zhaw.funding.euNode_CH
zhaw.issue2de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end286de_CH
zhaw.pages.start276de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume34de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedWildtiermanagementde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.