Full metadata record
DC FieldValueLanguage
dc.contributor.authorBraunisch, Veronika-
dc.contributor.authorBollmann, Kurt-
dc.contributor.authorGraf, Roland Felix-
dc.contributor.authorHirzel, Alexandre H.-
dc.date.accessioned2018-10-01T14:28:41Z-
dc.date.available2018-10-01T14:28:41Z-
dc.date.issued2008-06-
dc.identifier.issn1872-7026de_CH
dc.identifier.issn0304-3800de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/11280-
dc.description.abstractPredictive species distribution models have become increasingly common in conservation management. Among them, envelope-based approaches like the Ecological Niche Factor Analysis (ENFA) are particularly advantageous, as they require only presence data. Based on the assumption that the absolute frequency of species presence is a direct indicator of habitat suitability (HS), habitat suitability indices (HSI) are computed. However, this assumption may be misleading when the scarcity of optimal habitat forces most of the individuals to live in suboptimal conditions. This often happens when the environmental conditions in the study area represent only a marginal part of the species fundamental niche. In this study we propose three new HS algorithms for ENFA models, which address such ‘edge of niche’ situations. The first algorithm (area-adjusted median, Ma) takes the availability of environmental conditions in the study area into account, the second (median + extremum, Me) addresses situations where the species’ optimum is at or beyond the extremum of the investigated environmental gradient, and the third (area-adjusted median + extremum, Mae) combines both approaches. These algorithms were applied to two populations of capercaillie (Tetrao urogallus), situated in different positions relative to the environmental gradient represented in the respective study area, and compared with the classical median algorithm (M). We evaluated the models using cross-validation and a comparison with an expert model based on external data. In both study areas, the HS maps obtained with the three new algorithms differed visibly from those calculated with the median algorithm. Cross-validation and comparison with external data showed that the new algorithms always provided better models, with the extremum-based algorithms (Me and Mae) performing best. We conclude that the new algorithms can extend the applicability of ENFA-models to a broader range of conservation-relevant species by improving HS calculations for skewed species-habitat relationships in marginal habitats.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofEcological Modellingde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectEcological Niche Factor Analysis (ENFA)de_CH
dc.subjectMedian algorithmde_CH
dc.subjectSpecies distribution modelde_CH
dc.subjectTetrao urogallusde_CH
dc.subjectCapercailliede_CH
dc.subject.ddc333: Bodenwirtschaft und Ressourcende_CH
dc.subject.ddc577: Ökologiede_CH
dc.titleLiving on the edge : modelling habitat suitability for species at the edge of their fundamental nichede_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Umwelt und Natürliche Ressourcen (IUNR)de_CH
dc.identifier.doi10.1016/j.ecolmodel.2008.02.001de_CH
zhaw.funding.euNode_CH
zhaw.issue2-4de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end167de_CH
zhaw.pages.start153de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume214de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedWildtiermanagementde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.