Full metadata record
DC FieldValueLanguage
dc.contributor.authorCousin, Samuel-
dc.contributor.authorCharlier, Cyril-
dc.contributor.authorKadeřávek, Pavel-
dc.contributor.authorMarquardsen, Thorsten-
dc.contributor.authorTyburn, Jean-Max-
dc.contributor.authorBovier, Pierre-Alain-
dc.contributor.authorUlzega, Simone-
dc.contributor.authorSpeck, Thomas-
dc.contributor.authorWilhelm, Dirk-
dc.contributor.authorEngelke, Frank-
dc.contributor.authorMaas, Werner-
dc.contributor.authorSakellariou, Dimitrios-
dc.contributor.authorBodenhausen, Geoffrey-
dc.contributor.authorPelupessy, Philippe-
dc.contributor.authorFerrage, Fabien-
dc.description.abstractNuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.de_CH
dc.publisherRoyal Society of Chemistryde_CH
dc.relation.ispartofPhysical Chemistry Chemical Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc530: Physikde_CH
dc.titleHigh-resolution two-field nuclear magnetic resonance spectroscopyde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Angewandte Mathematik und Physik (IAMP)de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Cousin, S., Charlier, C., Kadeřávek, P., Marquardsen, T., Tyburn, J.-M., Bovier, P.-A., Ulzega, S., Speck, T., Wilhelm, D., Engelke, F., Maas, W., Sakellariou, D., Bodenhausen, G., Pelupessy, P., & Ferrage, F. (2016). High-resolution two-field nuclear magnetic resonance spectroscopy. Physical Chemistry Chemical Physics, 18(48), 33187–33194. https://doi.org/10.1039/C6CP05422F
Cousin, S. et al. (2016) ‘High-resolution two-field nuclear magnetic resonance spectroscopy’, Physical Chemistry Chemical Physics, 18(48), pp. 33187–33194. Available at: https://doi.org/10.1039/C6CP05422F.
S. Cousin et al., “High-resolution two-field nuclear magnetic resonance spectroscopy,” Physical Chemistry Chemical Physics, vol. 18, no. 48, pp. 33187–33194, 2016, doi: 10.1039/C6CP05422F.
COUSIN, Samuel, Cyril CHARLIER, Pavel KADEŘÁVEK, Thorsten MARQUARDSEN, Jean-Max TYBURN, Pierre-Alain BOVIER, Simone ULZEGA, Thomas SPECK, Dirk WILHELM, Frank ENGELKE, Werner MAAS, Dimitrios SAKELLARIOU, Geoffrey BODENHAUSEN, Philippe PELUPESSY und Fabien FERRAGE, 2016. High-resolution two-field nuclear magnetic resonance spectroscopy. Physical Chemistry Chemical Physics. 2016. Bd. 18, Nr. 48, S. 33187–33194. DOI 10.1039/C6CP05422F
Cousin, Samuel, Cyril Charlier, Pavel Kadeřávek, Thorsten Marquardsen, Jean-Max Tyburn, Pierre-Alain Bovier, Simone Ulzega, et al. 2016. “High-Resolution Two-Field Nuclear Magnetic Resonance Spectroscopy.” Physical Chemistry Chemical Physics 18 (48): 33187–94. https://doi.org/10.1039/C6CP05422F.
Cousin, Samuel, et al. “High-Resolution Two-Field Nuclear Magnetic Resonance Spectroscopy.” Physical Chemistry Chemical Physics, vol. 18, no. 48, 2016, pp. 33187–94, https://doi.org/10.1039/C6CP05422F.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.